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I. INTRODUCTION

The graph coloring problem(COL) has been studied both
in combinatorics[1] and in statistical physics[2]. Given a
graph, or a lattice, and given a numberq of available colors,
the problem consists in assigning a color to each vertex such
that no edge has two equally colored end vertices. For a
given graph, one quantity of interest is thereby the minimal
number of colors needed, i.e., the so-called chromatic
number.

In this paper we are going to consider COL as applied to
random graphs of fluctuating as well as of fixed connectivity.
In fact, determining their chromatic number is one of the
most fundamental open problems in random-graph theory
[3]. It has attracted considerable interest also within the the-
oretical computer-science literature: COL is one of the basic
NP-hard problems which form the very core of complexity
theory [1]. Defined on random graphs, the problem shows
interesting phase transitions at the so-calledq-COL/UNCOL
thresholdscq: Graphs of average connectivityc,cq owe
proper q colorings with high probability(approaching one
for graph sizeN→`), whereas graphs of higher connectivity
require more thanq colors. This transition is connected to a
pronounced peak in the numerical resolution time, i.e., in the
time needed to either construct aq coloring or to prove its
nonexistence. The hardest to solve problems are typically
situated close to the phase boundary.

One of the first important mathematical results forq-COL
on Erdös-Rényi random graphs[4] of average connectivityc
was obtained by Łuczak more than one decade ago[5]. He
showed in particular that, for a random graph of given finite
average connectivityc, the chromatic number takes one out
of only two possible consecutive values with high probabil-
ity. Even if he was not yet able to determine these values, he

showed thatq colors arenot sufficient for almost all graphs
with cù2q ln q−ln q−1+os1d. Rephrased in terms of the
q-COL/UNCOL thresholdcq, he thus proved the upper
bound cqø2q ln q−ln q−1+os1d. Very recently Achlioptas
and Naor[6] put a rigorous lower bound on the threshold
using the second moment method. They showed thatcq
ù2q ln q−2 ln q+os1d, but their method in fact leads to an
even better conjectured lower boundcqù2q ln q−ln q−2
+os1d [7] which differs by just 1 from Łuczak’s upper
bound. So, up to these small intervals, the exact and unique
value of the chromatic number is known by now. Inside these
intervals, even more powerful methods are needed to deter-
mine the chromatic number and thus the COL/UNCOL
threshold.

If one considers, on the other hand, the performance of
linear-time algorithms,q colorings can be easily constructed
up to connectivityc.q ln q, i.e., only in roughly the first
half of the colorable phase. It is simple to design algorithms
working up to c=s1−«dq ln q, for any «.0, whereas no
linear-time algorithm is known which works also for connec-
tivity c=s1+«dq ln q [8–10]. The very existence of linear
algorithms working also beyond this point is considered as
another major open question[11] within the field.

Recently, the problem has been reconsidered using tools
borrowed from statistical mechanics of disordered systems
[12,13]. In this way both questions, i.e., the location of the
q-COL/UNCOL threshold and the reason for the failure of
linear-time algorithms well before this threshold, have fur-
ther approached an answer, though not on completely rigor-
ous grounds. Within the 1RSB approach, the
q-COL/UNCOL transitioncq can be determined for an arbi-
trary number of colorsq. Moreover, the 1RSB approach pre-
dicts a connectivity regioncd,c,cq inside the colorable
phase, where solutions are nontrivially organized in clusters,
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an exponential number of metastable states and large ener-
getic barriers exist. This clustering phenomenon—
intuitively—causes local algorithms to get stuck, see Ref.
[14] for recent results.

All these results were derived with the cavity method in
1RSB approximation[15] which makes strong hypotheses on
the phase space structure of the problem. The computation is
further on heuristic in the sense that assumptions are only
checked self-consistently, but its predictions are confirmed
by independent numerical tests. Very recently a number of
papers have put under scrutiny the clustering hypothesis in
glass models on the Bethe lattice[16], in some combinatorial
optimization problems like the random satisfiability of a for-
mula made of the conjunction of clauses of inclusive or ex-
clusive disjunctive combination ofK boolean variable
(K-SAT and K-XORSAT) as well as in polymer problems
[20]. They analyze the possibility of more complex patterns
of clusterization due to local instabilities.

In this work we investigate these instabilities for the col-
oring problem. We thereby show that a small part of the
1RSB solution of Refs.[12,13] close to the onset of the
clustered phase turns out to be unstable. Interestingly
enough, however, theq-COL/UNCOL transition is in the
stable region at anyq, and thus the 1RSB threshold results
are expected to be exact. We will also analyze the stability of
the coloring problem on fixed connectivity random graphs,
which is somehow easier to deal with analytically.

The outline of the paper is as follows. Section II properly
defines the problem under investigation, and reviews the
1RSB approach. In Sec. III we set up the general formalism
for the stability analysis. The most relevant consequences of
this approach for a small number of available colors are then
presented in Sec. IV for the type-I instability, and in Sec. V
for the one of type II. Section VI is devoted to the highq
analysis of the model while, in Sec. VII, we finally consider
the problem at finite energies. Conclusions and perspectives
are drawn in Sec. VIII.

II. THE MODEL AND ITS 1RSB SOLUTION

A. The graph coloring problem

Let us start with a proper definition of the problem. We
consider a graphG=sV ,Ed defined by its verticesV
=h1, . . . ,Nj and undirected edgessi , jdPE which connect
pairs of verticesi , j PV. A graph q coloring is a mapping
s :V→ h1, . . . ,qj which assigns colors 1, . . . ,q to all vertices,
such that no edges are monochromatic. For all edgessi , jd
PE we have thereforesi Þs j.

Within the statistical-mechanics approach, a Hamiltonian
is assigned to this problem such that allq colorings are found
as ground states. For any color assignment, i.e.,hsij
P h1,2, . . . ,qj for all i PV, we therefore define

HG = o
si,jdP«

dssi,s jd s1d

with ds¯ ,¯ d denoting the Kronecker symbol. This Hamil-
tonian counts the number of monochromatically colored
edges, a proper coloring of the graph thus has zero energy. In

a physicist’s language, the Hamiltonian describes an antifer-
romagneticq-state Potts model on the graphG.

The aim within the statistical mechanics approach is to
study the ground state properties of this model: If the
ground-state energy equals zero, the graph is colorable. The
ground-state entropy determines the number of colorings,
and the order parameter, see below, characterizes the statis-
tical properties of the ensemble of all solutions. If, on the
other hand, the ground-state energy becomes positive, we
know that there are no proper colorings. The graph is uncol-
orable withq colors.

B. Erdös-Rényi random graphs and regular random graphs

We consider the graph coloring problem on two different
random-graph ensembles. The first one is the ensemble
G(N,c/ sN−1d) first introduced by Erdös and Rényi in the
late 1950’s[4]. A graph from this ensemble consists ofN
vertices j =1, . . . ,N. Between each pairi , j of vertices, with
i , j , an undirected edge is drawn randomly and indepen-
dently with probabilityc/ sN−1d. The vertices remains un-
connected by a direct edge with probability 1−c/ sN−1d.

Here we are mainly interested in the thermodynamic limit
N→`, i.e., we describe large graphs of finitec. The average
vertex degree, which equals the expected number of edges
incident to an arbitrary vertex, is easily calculated assN
−1d ·c/ sN−1d=c, and it remains finite in the large-N limit.
There are, however, degree fluctuations for every finitec. In
fact, in the thermodynamic limit, the probability that a ran-
domly selected vertex has degreed, is given by the Poisso-
nian distribution

pd = e−ccd

d!
s2d

of meanc. Another crucial point for our analysis is that, for
finite c, the number of triangles or other short loops in the
graph remains finite in the large-N limit. This means that the
graph is almost everywhere locally treelike, i.e., on finite
length scales it looks like a tree. Forc.1, there exists an
extensive number of loops. These have, however, length
Osln Nd, and become infinitely long forN→`.

The second ensemble is denoted byGcsNd, and contains
all c-regular graphs ofN vertices, wherec has to be a posi-
tive integer in this case. A graph is calledc-regular if and
only if all vertices have the same degreec, i.e., here we have

pd = dsd,cd. s3d

A random regular graph is one randomly selected element of
this ensemble. This guarantees again that the graph becomes
locally treelike. Note that due to the constant vertex degree,
these graphs look locally homogeneous, on finite length
scales they do not show any disorder. The random character
of regular graphs enters only via the long loops which are
again of lengthOsln Nd. In the statistical physics literature,
in particular in the theory of disordered and glassy systems,
random graphs are considered as one valid definition of a
Bethe lattice.

In a slightly more general context, both random graph
ensembles defined before can be embedded into the en-
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semble of random graphs with given degree distribution
[21,22]. For these graphs, onlypd is defined, and each graph
having the desired degree distribution is considered to be
equiprobable. In this sense, all results formulated below can
be directly generalized to arbitrary degree distributions.
Sometimes the formulation will even be given in this con-
text, but the concrete analysis will be restricted to Poissonian
and regular graphs.

For this generalized ensemble, we still introduce the prob-
ability rd that an arbitrary end-vertex of a randomly selected
edge has excess degreed, i.e., it is contained ind supple-
mentary edges, and its total vertex degree isd+1. Given the
degree distribution, this probability results as

rd =
sd + 1dpd+1

c
. s4d

Plugging in our special cases, we see that this distribution
remains Poissonian for Erdös-Rényi graphs, whereas the ex-
cess degrees equal constantlyc−1 in the case of regular
graphs.

C. Survey propagation equations forq coloring

The cavity equations for finite-connectivity systems in the
one-step replica-symmetry broken approximation have been
originally derived in Refs.[15,23]. Their single sample ver-
sion is usually called survey propagation(SP) and has been
introduced in Refs.[24,25] in the case of random 3-SAT.
Here, in order to fix the notation, we will briefly recall the SP
equations on the 1RSB level forq-COL closely following
Refs.[12,13]. Note, however, that a complete explanation of
all technical details is not the scope of this paper, for a de-
tailed presentation please see therefore the original publica-
tions [12,13].

The zero-temperature properties of the system(or local
minima ofHG) can be completely characterized by the edge-
dependent probability distributionsfsi , jdPEg.

Qi→ jsuWd = hi→ j
0 dsuWd + o

t=1

q

hi→ j
t dsuW + eWtd, s5d

where the vectorsheW1, . . . ,eWqj form the usualq-dimensional
canonical Euclidean base set, with componentset

s=dst ,sd.
Thehi→ j’s are positively defined probabilities, normalization
impliesSt=0

q hi→ j
t =1. The distributionQi→ jsuWd is called a sur-

vey, and it describes the probability that, in a suitably chosen
metastable state, or local minimum ofHG, a warninguW is
send from vertexi via the edgesi , jd to vertex j . Possible
warnings are the vectors −eWt which include a warning that
assigning colort to vertex i will cause an energy increase,
and the zero messageuW =s0, . . . ,0d. In the following, warn-
ings will frequently denoted simply by their indicest
=0, . . . ,q.

These distributions are self-consistently determined via
the SP equations

Pi→ jshWd = Ci→ j E F p
kPVsid\ j

dquWkQk→isuWkdG
3dShW − o

kPVsid\ j
uWkDexpHy vS o

kPVsid\ j
uWkDJ , s6d

Qi→ jsuWd =E dqhWPi→ jshWddsuW − ûshWdd. s7d

There theCi→ j are normalization constants, the setVsid,E
contains all neighbors of vertexi, and the functionsû andv
are defined as

vshWd = − mins− h1, . . . ,−hqd,

ûtshWd = vshW − eWtd − vshWd. s8d

These equations have a very nice interpretation: A sitei re-

ceives an incoming fieldhW as a sum of all but one incoming
warnings. This field has either zero or negative entries, re-
flecting the anti-ferromagnetic character of the interaction.
The maximal field components determine the colors of mini-
mal energy if assigned toi. If this maximal field component
is unique, a nontrivial message “do not take this unique
color” is sent from vertexi to j via the last link. If the
maximal field component is degenerate, the zero message is
sent via linki → j .

Note the appearance of the reweighting parametery.0,
which allows to scan metastable states of different energies.
It acts similar to the inverse temperature in the usual Boltz-
mann weight: Differenty concentrate the measure on differ-
ent energy levels, and the limity→` corresponds to zero-
energy ground states.

The correspondingy-dependent free energy can be calcu-
lated as a sum of node and link contributions

fsyd =
1

NF o
si,jdP«

fi,j
linksyd − o

iPV

sdi − 1dfi
nodesydG , s9d

where di is the degree of vertexi. The expressions for
fi,j

linksyd andfi
nodesyd are given explicitly by

fi,j
linksyd = −

1

y
lnSE dqhWPi→ jshWddquWQj→isuWd

3exph− yfvshWd − vshW + uWdgjD s10d

and by

fi
nodesyd = −

1

y
lnSE p

kPVsid
dquWkQk→isuWkd

3expHyvS o
kPVsid

uWkDJD . s11d

From this free energy we can easily calculate both the com-
plexity Ssyd and the energy densityesyd,
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Ssyd = − y2]fsyd
]y

, esyd =
]fyfsydg

]y
, s12d

where the complexity is defined as the logarithm of the num-
ber of metastable states of energyesyd, divided by the num-
ber N of vertices.

Proper colorings are characterized by the limity→` of
the SP Eqs.(6) and (7). In this case, positive energy contri-
butions are forbidden and we work directly at zero energy.
The SP equations can be brought into a much more handy
form: They are reduced to the parametershi→ j

t , i.e., to the

probabilities to have an antiferromagnetic message for color
t sent from vertexi to vertex j . Using the vectorial notation

hW i→ j = shi→ j
1 ,hi→ j

2 , . . . ,hi→ j
q d, s13d

and denoting byVsid \ j =hk1,k2, . . . ,kdi−1j all neighbors ofi
different from j , we have the closed iteration description

hW i→ j = fWdi−1shW k1→i,hW k2→i, . . . ,hW kdi−1→id s14d

given componentwise by

hi→ j
t =

pkPVsid\ j s1 − hk→i
t d − ot1Þt pkPVsid\ j s1 − hk→i

t − hk→i
t1 d + ¯ + s− 1dq−1pkPVsid\ j hk→i

0

o1øt1øq pkPVsid\ j s1 − hk→i
t1 d − o1øt1,t2øq pkPVsid\ j s1 − hk→i

t1 − hk→i
t2 d + ¯ + s− 1dq−1pkPVsid\ j hk→i

0
, s15d

for all tP h1, . . . ,qj. The value ofhi→ j
0 can be calculated

from the normalization constraint.
The above formalism is formulated for the analysis of a

single(treelike) graph, but it can be easily modified in order
to deal with average quantities on the random-graph en-
semblesGfN,c/ sN−1dg or GcsNd, see Sec. II B. General con-
siderations on the existence of a well defined thermodynamic
limit [26,27] imply the existence of a functional probability
distribution QfQsuWdg describing how the surveysQsuWd are
distributed on the edges of the graph. Noting that a
q-component vectorhW is sufficient to describe a surveyQi→ j,
we can explicitly writeQfQsuWdg as

QfQsuWdg2 =E dqhW rshW ddFQsuWd − S1 − o
t=1

q

htDdsuWd

− o
t=1

q

htdsuW − eWtdG s16d

in terms of a simpleq-dimensional probability distribution
rshW d, with df·g denoting a functional Dirac distribution. The
SP equations(6) and(7) have to be interpreted in a probabi-
listic way: Drawing first an excess degreed with probability
rd, cf. Eq. (4), and thend independently chosen surveys
QlsuWd, l =1, . . . ,d, from QfQg, we calculate

P0shWd = C0E dquW1Q1suW1d ¯ dquWdQksuWddeyvsol=1
d uWdd

3dShW − o
l=1

d

uW lD , s17d

Q0suWd =E dqhWP0shWdd„uW − ûshWd…. s18d

The cavity equation for the functional distribution of surveys
closes by the observation that the newly generatedQ0suWd has

to be again a typical survey drawn fromQfQsuWdg.
Concentrating on the color-symmetric situationh : =h1

= . . . =hq, the distribution rshW d is reduced to a one-
dimensionalr̂shd. The limit y→` of the cavity equations is
readily obtained:

r̂shd = o
d=0

`

rdE dh1r̂sh1d ¯ dhdr̂shdddfh − f̂ dsh1, . . . ,hddg

s19d

with

f̂ dsh1, . . . ,hdd =
ol=0

q−1
s− 1dls q−1

l dpi=1

d
f1 − sl + 1dhig

ol=0

q−1
s− 1dls q

l+1dpi=1

d
f1 − sl + 1dhig

.

s20d

It is also possible to give a closed expression for the com-
plexity in the COL region(notice thepd instead ofrd):

Ssy = `d = o
d=1

`

pdE dh1r̂sh1d ¯ dhdr̂shdd

3lnFo
l=0

q−1

s− 1dls q
l+1dp

i=1

d

f1 − sl + 1dhigG
−

c

2
E dh1r̂sh1ddh2r̂sh2dlns1 − qh1h2d.

s21d

D. The qualitative 1RSB picture

The formalism summarized above allows to determine not
only the location of theq-COL/UNCOL transition for every
q, but the order parameter also allows us to extract important
statistical information about structure and organization of the
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solutions. The most interesting point here concerns the set of
solutions, seen as a subset of allqN possible configurations
h1, . . . ,qjN. Every edge of the graph forbids a certain number
of configurations. For smallc, there is, however, still an ex-
ponentially large number of proper colorings. In addition,
these are organized in a very simple way. They are collected
in one very large cluster. For any two solutions, one can find
a connecting path via other solutions, without ever changing
more thanOs1d spins within one step of this path.

This changes drastically at some average degreecd: The
set of solutions is still exponentially large, but it is split into
an also exponential number of clusters. Inside each cluster,
connecting paths as described above still exist, but any two
clusters have an extensive Hamming distance from each
other, see also Fig. 1. Technically the clustering thresholdcd
is given by the first appearance of a nontrivial 1RSB solu-
tion. The number of clusters, or more precisely its logarithm
divided byN, is given by the complexity(21) mentioned in
the last subsection.

Inside these clusters, the first freezing phenomena are
found. A large fraction of all vertices is frozen to one color in
all solutions belonging to the same cluster. This color
changes, of course, from cluster to cluster, since the initial
model is color symmetric. Together with this clustering of
ground-states, also an exponential number of metastable
states appears. These have nonzero energy, but they are local
minima of Hamiltonian(1).

The complexity of solution clusters decreases, until it
vanishes atcq. Beyond this point, the graph is uncolorable.
There are still numerous ground state clusters, which have,
however, nonzero energy but zero complexity.

III. STABILITY CONDITIONS OF THE ONE-STEP RSB
SOLUTION

There is a growing believe by now that the cavity method
gives exact results and not just approximations—provided
that the replica symmetry is broken in the correct way. Even
if a rigorous general proof is still lacking, a number of steps
forward have been made so far in this direction. On this basis
we conjecture that the results concerning the colorability
threshold, as well as many features of the phase diagram
(like for instance the existence of the clustering phase) are
exact.

In general, however, the one-step RSB solution of such
disordered models has no particular reason to be correct. In
some models, the replica symmetry has to be broken infi-
nitely many times to reach the exact solution. In the language
of the cavity method one should thus consider an infinite
hierarchy of nested clusters. This happens, for instance, in
the Sherrington-Kirkpatrick(SK) model [28], and Talagrand
has recently demonstrated rigorously that the RSB free en-
ergy obtained in this way is exact[29]. On the other hand
there are models where 1RSB is not an approximation, and
no further steps of symmetry breaking are needed. This hap-
pens, e.g., in the random-energy model[30] and in the
K-XORSAT problem[31,32] (a problem known in statistical
physics as the dilutedp-spin model). There the 1RSB solu-
tion is known to be rigorously exact.

Here we are going to determine whether, in theq-coloring
problem, one step of RSB is sufficient or whether more steps
have to be taken into account to get the correct solution. We
do this by means of analyzing the stability of the 1RSB
solution against further RSB steps. To be more precise, we
should formulate a 2RSB solution of the model and see if the
1RSB solution is stable against a small 2RSB perturbation
[33]. This type of local stability analysis has receive a lot of
interest recently, extending the seminal work of Elisabeth
Gardner[34] to finite connectivity spin glass models[18]. It
was clarified a lot in Refs.[16,20], and a formalism to deal
with more general finite-connectivity problems has been es-
tablished by now[16,17,19]. The coloring problem, as con-
sidered here, will allow for nice analytical treatments, in par-
ticular if considered on regular graphs.

Let us rephrase the stability considerations for our prob-
lem, following the notation in Ref.[19]. Using Eq.(16) the
cavity equations for generaly (17) and(18) can be rewritten
in terms of the probabilitiesht ,t=0, . . . ,q only. Formally
this results in

h0
t = C0 o

ss1,. . .,sdd→t

h1
s1
¯ hd

sdeyvss1,. . .,sdd, s22d

where the sum runs over all possible combinations of input
messages 0øs1, . . . ,sdøq which induce the output mes-
sage labeled byt. Remember that the special casey=`
which concentrates on ground states, was given explicitly in
Eq. (15).

The 1RSB solution is given by a color-symmetric distri-
bution r̂shd, describingh fluctuations from link to link. Let
us, for a moment, consider an arbitrary edgei → j (together
with a direction) which is characterized by onesingle
y-dependent value ofh. In the 1RSB formalism, there are
many (meta)stable states. In each of them, this linki → j
carries exactly one warning corresponding either to one of
the colors, or being the zero message. For a randomly se-
lected state of energy densityesyd a specific warning is found
with color-independent probabilityh, the trivial message ap-
pears in a fraction 1−qh of these states. This is schemati-
cally represented on the left side of Fig. 2.

Let us now consider two steps of RSB. There we need to
take into account the existence of clusters of states. Regard-
ing small perturbations of the 1RSB solution, two situations
are possible[18].

FIG. 1. A pictorial view of the solution space structure. For
small average degreec, all solutions(marked by full dots) are col-
lected within one large cluster. At some transition pointcd, this
cluster breaks down into an exponential number of separated clus-
ters. Beyondcq, i.e., in the UNCOL phase, there are still distinct
ground state clusters, but they have nonzero energy(marked by
empty dots).
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Type I: States mayaggregatein configuration space, see
Fig. 2. In that case the order parameter(still for a fixed link
i → j) is the probabilitygsh1, . . . ,hqd to randomly select a
cluster in which there is a fractionh1 of states with message
−eW1 transmitted fromi to j , etc. Note that it is not sufficient
to consider a probability distributiongshd of a single, color-
symmetric fractionh since the color symmetry can be bro-
ken inside a cluster. This is illustrated in Fig. 2. To study the
stability of the 1RSB solution, one should thus write the
2RSB equation, insert a perturbed 1RSB solution and see if it
evolves back to 1RSB. In this case, the 1RSB solution is
obtain by consideringgsh1, . . . ,hqd=dsh1−hd¯dshq−hd.
To test stability, we thus need to replace the Dirac peaks by
narrow functions of widthe, and to see if the width increases
or goes to zero during the cavity iteration process. The analy-
sis thus amounts to look if a small noise added to the solu-
tion will vanish. This is equivalent to testing convergence of
the SP equations on a single graph. We will refer to this kind
of analysis as “noise propagation”.

Type II: States may fragment into new states, see the
lower right picture in Fig. 2. In the 1RSB solution, a linki
→ j carries a message which is uniquely determined within
one state. If now this state fragments into one cluster of
many states, also the single message is transformed into a set
of messages. To introduce a small perturbation of the 1RSB
solution, we should assume that, with high probability, the
states within one cluster are still characterized by the same
message on linki → j . In a small fraction of these states,
however, also other messages may appear. The problem is
now if or if not this perturbation tends to zero under iteration
of the 2RSB equations. The stability analysis thus amounts to
see if a change in one message(called a bug in Ref.[19]) can
propagate through the whole system, or if it remains local-
ized. We will refer to this instability, following the terminol-
ogy of Ref.[19], as bug proliferation.

A. Type-I instability: Aggregation of states and noise
propagation

Let us start with noise propagation. The stability can be
computed from the Jacobian

Tts = U ]h0
t

]h1
sU

1RSB

, s23d

which gives the infinitesimal probability that a change in the
input probabilityh1

s will change the output probabilityh0
t, cf.

Eq. (22). The index 1RSB says that the expression has to be
evaluated at the 1RSB solution found within the cavity ap-
proach. Note that we need to calculate this matrix only for
1øs, tøq since the probability of the zero message follows
by normalization and thus does not describe an independent
quantity. After one iteration, a change of one input message
of a vertex of degreed induces a change ind−1 outgoing
messages. The global perturbation aftern iterations thus con-
cerns on averagesoddrddn cavity messages, whererd is com-
puted from Eq.(4). To monitor also the strength of the per-
turbation, we have to calculate

o
d1,. . .,dn

d1rd1
¯ dnrdn

trksT1T2 ¯ Tnd2lh, s24d

whereT1, . . . ,Tn are n successiveT matrices. The notation
k¯lh denotes the average over the external messages to the
nodes 1, . . . ,n. To be more precise we should writeTi
=Tdi

shi,1, . . . ,hi,di
d, i.e.,Ti depends ondi incoming probabili-

ties hi,1, . . . ,hi,di
, with di being the excess degree of vertexi

distributed according tordi
. For i =1, all messages are exter-

nal. They have to be generated independently from the 1RSB
order parameterr̂shd. For i .1, the first message described
by hi,1 results from nodei −1 according to Eq.(22). The
other inputshi,2, . . . ,hi,di

are again external and thus inde-
pendently distributed withr̂shd. Note that theh-averaged
matrix ksT1T2¯Tnd2lh still depends on the random excess
degreesd1, . . . ,dn. This has to be taken into account in the
sum in Eq.(24).

A simple way to calculate the trace forn@1 is to consider
the biggest eigenvalue of the matrixksT1T2¯Tnd2lh, which
allows us to use a single number to follow the perturbation.
This, however, becomes very simple forq-COL. Let us re-
write the Jacobian

T = 3
]h0

1

]h1
1

]h0
2

]h1
1 . . .

]h0
q

]h1
1

]h0
1

]h1
2

]h0
2

]h1
2 . . .

]h0
q

]h1
2

. . . . . . . . . . . .

]h0
1

]h1
q

]h0
2

]h1
q . . .

]h0
q

]h1
q

4
1RSB

. s25d

Evaluated at the color-symmetric 1RSB solution, this matrix
has only two different entries: All diagonal elements are
equal, and all nondiagonal elements are equal. As an imme-
diate consequence all Jacobians commute and are thus simul-

FIG. 2. (Color online) A pictorial view of the two types of
instabilities of the 1RSB solution, represented here for a given link
i → j in the three-coloring problem. In each 1RSB states(on the
left), this link carries a message of a given color, or no message at
all (white clusters here). Going from a 1RSB to 2RSB, these states
may aggregate into bigger clusters(type-I instability) or fragment in
new smaller clusters(type-II instability).
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taneously diagonalizable. The matrixT has only two distinct
eigenvalues

l1 = US ]h0
1

]h1
1 −

]h0
1

]h1
2DU

1RSB

,

l2 = US ]h0
1

]h1
1 + sq − 1d

]h0
1

]h1
2DU

1RSB

. s26d

The second eigenvalue belongs to the homogeneous eigen-
vector(1, 1,…, 1). It describes a fluctuation changing allh1

t,
t=1, . . . ,q, by the same amount, i.e, a fluctuation maintain-
ing the color symmetry. The first eigenvalue issq−1d-fold
degenerate, eigenvectors are spanned bys1,−1,0, . . . ,0d,
s0,1,−1,0, . . . ,0d,…,s0, . . . ,0 ,1,−1d. The corresponding
fluctuations explicitly break the color symmetry, and they are
in fact found to be the critical ones for the instability of the
1RSB solution.

For zero-energy ground states in the COL phase, where
y=`, one may proceed using the closed analytical expres-
sion (15) for the iteration. It is possible to explicitly write
down both eigenvalues. We will see in Sec. VI how to derive
asymptotic results at largeq. Finally, to monitor the pertur-
bation, one should consider the dependence of

ltype Isnd = o
d1,. . .,dn

d1rd1
¯ dnrdn

lksT1 ¯ Tnd2lh
s27d

on the numbern of iteration steps. TherelksT1T2¯Tnd2lh
de-

notes the biggest eigenvalue of matrixksT1T2¯Tnd2lh. It can
be computed as a product of eigenvalues being either all of
typel1 or all of typel2. The 1RSB solution is stable against
type-I perturbations if and only ifltype Isnd decays to zero in
the large-n limit.

B. Type II instability: Fragmentation of states and bug
proliferation

As discussed above, we have to consider bug proliferation
in order to study the second type of instability, i.e., the in-
stability with respect to fragmentation of states into clusters
of states. Suppose that a message of types is turned into
another messages̃. This is called a bug in Ref.[19]. We
suppose it to happen with small probabilityps→s̃!1. As a
consequence, some output messages may change, and the
bug propagates. The system is unstable with respect to type
II perturbations if such a bug propagates through the whole
system.

Considering small perturbations, we can work in the lin-
ear response regime. For a generic change of the first input
message in Eq.(22), we may calculate the probability of
changing the output message

p0
t→t̃ = C0 o

ss,s2,. . .,sdd→t

ss̃,s2,. . .,sdd→t̃

p1
s→s̃h2

s2
¯ hd

sdeyvss̃,s2,. . .,sdd.

s28d

This defines a matrixV with entries

Vt→t̃,s→s̃ =
]p0

t→t̃

]p1
s→s̃

, s29d

evaluated at the 1RSB solution. Since a message may have
q+1 different states and we are considering actual changes in
messages,V is a square matrix of dimensionqsq+1d. We
study it in Appendix A and show that its biggest eigenvalues
can be written, at any giveny, as a function ofq and
h1, . . . ,hd as

l = sq − 1dAsq,hhjd + ÎBsq,hhjdB8sq,hhjd, s30d

whereA, B, andB8 are explicitly given in Eq.(A4) in Ap-
pendix A. In the zero-energy case, i.e., fory→`, this ex-
pression simplifies to

l = sq − 1dAy=`sq,hhjd, s31d

whereAy=`sq,hhjd is given by

Ay=`sq,hhjd =
ol=0

q−2
s− 1dls q−2

l dpi=2

d
f1 − sl + 2dhig

ol=0

q−1
s− 1dls q

l+1dpi=1

d
f1 − sl + 1dhig

.

s32d

The instability with respect to bug proliferation has to be
determined from a product ofn such matrices. Proliferation
is monitored, using again Eq.(4), by

o
d1,. . .,dn

d1rd1
¯ dnrdn

trkV1V2 ¯ Vnlh s33d

or, using the eigenvalue notation, by

ltype IIsnd = o
d1,. . .,dn

d1rd1
¯ dnrdn

lkV1V2 ¯ Vnlh
, s34d

where lkV1V2. . .Vnlh
is the biggest eigenvalue of matrix

kV1V2¯Vnlh. The averages are performed in complete anal-
ogy to averages in the type I case. The 1RSB solution is
stable if and only if this eigenvalue decays to zero forn
→`.

IV. STUDY OF THE TYPE-I INSTABILITY: NOISE
PROPAGATION

Using the criteria derived in the previous section, we can
now study the stability of the 1RSB solution for the ground
states of the coloring problem, i.e., we concentrate first on
y→`. We will, in the following, call cSP the connectivity
beyond which 1RSB is type I unstable because, as we will
see, the SP equations do not converge anymore on a single
graph forc.cSP.

A. Regular random graphs

In the case of fixed-connectivity graphs all sites are
equivalent, soh does not fluctuate from edge to edge. There-
fore, the recursion equation(20) can be simplified to
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h = f̂ kshd =
ol=0

q−1
s− 1dls q−1

l df1 − sl + 1dhgk

ol=0

q−1
s− 1dls q

l+1df1 − sl + 1dhgk
s35d

with k=c−1. This equation can be easily solved using basic
numerical tools. Similar simplifications arise in the compu-
tation of the complexityS. Within the 1RSB formalism, it is
therefore very easy to derivehsq,cd, to compute the corre-
sponding complexity, and thus to determine if the graph is in
the COL phase or not. One finds that that at small connec-
tivities the solution is trivial, i.e.,h=0. For cùcd the clus-
tering RSB phenomenon occurs, and forcùcq the graph
becomes uncolorable. To test the validity of the 1RSB ansatz
we are now going to apply the criteria derived previously.
Due to the fixed vertex degree, there is no need to average
over the site distribution. The stability criterion thus simpli-
fies considerably to

ltype Is1d = kUS ]h0
1

]h1
1 −

]h0
1

]h1
2D2U

1RSB

, 1. s36d

In Table I, we summarize the values ofh andS, as well as
stability criteria, forq=3, 4, and 5. The instability of type I
appears at high connectivity, in the UNCOL phase. So it
turns out to be irrelevant in the COL phase. This turns out to
be true for arbitrary numberq of colors, see Sec. VI for the
asymptotic case. However, this instability is directly relevant
for the behavior of the SP algorithm on single graphs: When
cùcSP, SP stops to converge on a single graph. This is ac-
tually what the Jacobian(23) implies first of all. We have
verified this numerically for 3-COL, SP does not converge
on regular graphs of degree equal to or larger than 6.

B. Fluctuating-connectivity random graphs:
Erdös-Rényi ensemble

Let us now turn to Erdös-Rényi random graphs. Sites are
no more equivalent and the order parametersh fluctuate
from link to link. We have to be very careful in the disorder
average in the stability criterion, a detailed description was
given above. The type I instability amounts to see if a small
change inh propagates through the whole system. We saw in
Sec. III that this can be computed by the study of a Jacobian
that describes the propagation of a perturbation after one
iteration. The global perturbation aftern iteration is moni-
tored by the sum of the squares of the perturbed cavity bias,
which behaves as

ltype Isnd = o
d1,. . .,dn

d1rd1
¯ dnrdn

lksT1T2 ¯ Tnd2lh
, s37d

wherelksT1¯Tnd2lh
is the maximal eigenvalue of theh aver-

age of matrixsT1¯Tnd2. The system is stable ifltype Isnd
goes to zero withn, and instable if it diverges. Let us con-
centrate for a moment on 3-COL: Using the SP equation on
single graphs, we saw that the iteration is not converging
anymore forc.5.01. Evaluating the stability criterion, we
were able to reproduce this number analytically(see Fig. 3).
Both methods agrees exactly. We have summarized our result

TABLE I. Computation ofh, S, andltype I for q=3, 4, and 5
and various values of the connectivity on regular random graphs.

q, c phase h S ltype-I

q=3, c=4 COL

q=3, c=5 COL 1RSB 0.279 0.037 0.688

q=3, c=6 UNCOL Instable 0.318 −0.137 1.103

q=3, c=7 UNCOL Instable 0.327 −0.329 1.420

q=4, c=8 COL

q=4, c=9 COL 1RSB 0.223 0.040 0.764

q=4, c=10 UNCOL 1RSB 0.236 0.03 0.86

q=4, c=11 UNCOL Instable 0.242 −0.216 1.02

q=5, c=12 COL

q=5, c=13 COL 1RSB 0.1759 0.0960 0.5605

q=5, c=14 COL 1RSB 0.1853 0.00380 0.6788

q=5, c=15 UNCOL 1RSB 0.1902 −0.0952 0.775

q=5, c=16 UNCOL 1RSB 0.1932 −0.1982 0.8622

q=5, c=17 UNCOL 1RSB 0.1952 −0.3037 0.942

q=5, c=18 UNCOL Instable 0.1966 −0.4109 1.017

FIG. 3. (Color online) Analytic and numerical computation of
the location of the type I instability point in the three coloring on
fluctuating connectivities graphs. We findcs3dSP.5.01 in both
cases, which confirms well that SP equation stop to converge when
c.cSP.
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for cSP in the last column of Table III. Again, the conclusion
is that the type I instability is irrelevant for the thermody-
namics of the system.

V. STUDY OF THE TYPE-II INSTABILITY:
BUG PROLIFERATION

We turn now to the instability of type II. As before, we
start with regular random graphs, and then we move to
Erdös-Rényi graphs. In Ref.[18], it is argued that, if 1RSB
states are instable, then these states should be described us-
ing a full RSB ansatz, and therefore are marginally stable
[35]. The connectivity at which the instability appears was
therefore calledcm for cmarginal. Although it is not yet clear if
full RSB is needed in the case 1RSB is unstable, we follow
this notation and callcm the connectivity at which the type II
instability shows up.

A. Regular random graphs

Using again the homogeneous solution, it is very easy to
write the stability criterion. It reads(see Appendix B)

ltype II = ksq − 1d
ol=0

q−2
s− 1dls q−2

l df1 − sl + 2dhgk−1

ol=0

q−1
s− 1dls q

l+1df1 − sl + 1dhgk
, 1

s38d

with k=c−1. Applying this criterion, it turns out that the
instability does not appear at lowq. In fact, for q,6, the
ground state in the COL region is always either RS or 1RSB,
no instability toward 2RSB is observed. However, whenq
=6, the lowest connectivity for which RSB appears turns out
to be instable. More generally, there is an unstable zone
growing withq before the stable 1RSB region is reached. We
summarize our result for smallq in Table II. Note thatcd is
calculated in 1RSB approximation, if the latter is instable its
position may change due to more-step RSB.

The one-step solution is thusnot always stable in COL
phase. It seems, however, to be correct close to the COL/
UNCOL threshold, the result for the latter is therefore con-
jectured to be exact. The global situation is schematically

represented in the Fig. 4. We have derived the solution of this
problem up toq=200, which allows us to draw a quite com-
plete phase diagram for the problem on finite connectivity
random graphs, see Fig. 5. From this phase diagram, two
important points have to be noticed.

The critical line for the COL/UNCOL transition is always
in the 1RSB stable zone, and therefore we believe it to be be
an exact result.

There are two zones where the 1RSB solution is unstable.
This is happening at high connectivity in the UNCOL phase,
due to a type-I instability, and also in a small, though grow-
ing (with the number of colors) zone between the RS COL
and the 1RSB COL phases, due to a type-II instability.

B. Erdös-Rényi random graphs

Let us now go back to the Erdös-Rényi ensemble. As
mentioned above, the instability is monitored by

TABLE II. Critical connectivities of the coloring problem on
fixed connectivities random graphs.

q cd cm cq cSP

3 5 5 6 6

4 9 9 10 11

5 13 13 15 18

6 17 18 20 27

7 21 22 25 38

8 26 27 31 51

9 31 32 37 66

10 36 37 44 83

11 41 43 50 102

12 46 48 57 123

FIG. 4. (Color online) Schematic phase diagram for the coloring
transition ate=0. At small connectivity, whenc,cd the problem is
COL and the space phase is trivial. Then, forcùcd the phase space
is broken into many states and RSB appears. In this RSB phase
there is a one-step RSB zonecmøc,cSP in which detailed com-
putations are possible. The COL/UNCOL transition appearing atcq

is always found in this zone. Note that for some connectivities,cd

andcm are equal.

FIG. 5. (Color online) Phase diagram of theq-coloring problem
on random graphs with fixed connectivities, for 3 to 200 colors.
From bottom to top we have four lines corresponding tocd, cm, cq

andcSP. The critical linecq that separates the COL and the UNCOL
region is always in the stable zone, where we conjecture our results
to be exact. Note however the small, but slowly growing, zone in
the COL region where the 1RSB computation is unstable.
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ltype IIsnd = sq − 1dn o
d1,. . .,dn

d1rd1
¯ dnrdn

3Kp
i=1

n ol=0

q−2
s− 1dls q−2

l dp j=2

di f1 − sl + 2dhi,jg

ol=0

q−1
s− 1dls q

l+1dp j=1

di f1 − sl + 1dhi,jg
L

, 1, s39d

where thedi has the characteristic Poissonian distributionrdi
of averagec. As already explained above, theh values are
given in the following way. For the first nodei =1, all values
of h1,1, . . . ,h1,d1

are drawn independently fromr̂shd. This
allows us to calculate the first factor in the above product,

but also the first input messageh2,1= f̂ d1
sh1,1, . . . ,h1,d1

d to
the second node. The otherd2−1 input messages
h2,2, . . . ,h2,d2

are drawn again fromr̂shd. This is repeated
for the other vertices: The input message on the link coming
from the previous node is induced via the SP equation, the
others are drawn randomly. Using again the population dy-
namic solution of the coloring problem, it is easy to perform
this average. For 3-COL, e.g., we find the instability to be
present for connectivitiesc,cm.4.51(see Fig. 6). We have
repeated this study forq=4 and 5. Our results are summa-
rized in Table III. As opposed to what happens in the fixed-
connectivity case, there is an unstable interval close to the
clustering transition atq=3,4. Forq=5, however, it is al-
ways stable. As we will see in the next section, at larger
connectivities the unstable zone reappears. Again, the most
important conclusion is that the critical values for the COL/
UNCOL transition are in the stable zone. We thus conjecture
that the connectivities for the COL/UNCOL transition are

exact.

VI. ASYMPTOTIC THRESHOLD VALUES
IN THE HIGH- q LIMIT

Whereas the precise values for transitions and stability
regions of the 1RSB approach have to be determined by
numerically solving the cavity equations, and by plugging
this solution into the stability criteria, an asymptotic analysis
can be carried through analytically in the limit of a large
number of colors, i.e., forq@1. As an astonishing result,
Poissonian and regular random graphs have the same
asymptotic behavior, at least as far as the dominant contribu-
tions are concerned. Degree fluctuations play a role only at
low-order contributions which, due to the complexity of their
determination, are not considered here. To lighten the presen-
tation, we consider therefore only the case of regular graphs,
i.e. of equal vertex degreesc=k+1 for all vertices.

As discussed above, in this case the 1RSB solution is
factorized and thus completely determined by a single edge-
and color-independenth. A basic numerical observation in
this context is that, forq@1, thish approaches 1/q, whereas
the probabilityh0=1−qh of sending a trivial message van-
ishes asymptotically. We can therefore writeqh=1−gsq,cd,
where the positive, but still unknown functiongsq,cd will be
shown to vanish in the large-q limit.

Note that, in the case of fluctuating vertex degrees, alsoh
will fluctuate according to some nontrivialrshd. For largeq,
this distribution concentrates, however, more and more
sharply around its average value. A careful analysis of the
influence of these fluctuations shows that they contribute
only to subdominant terms in the threshold values, i.e., they
can be neglected to the considered orders inq.

A. The clustering transition in 1RSB approximation

The clustering transition is characterized by the onset of a
nontrivial solution of the survey propagation equation(19).
To determine this point, we consider a graph of constant
degreec=k+1 with

k = qfln q + ln ln q + ag. s40d

Therea is an arbitrary constant, i.e., in the large-q limit k is
determined down toOsqd. Doing so, we zoom directly into
the region where the dynamical transition appears: We look
for anad at which the first nontrivialh appears as a solution
of

h =
ol=0

q−1
s− 1dls q−1

l df1 − sl + 1dhgk

ol=0

q−1
s− 1dls q

l+1df1 − sl + 1dhgk
. s41d

As a first step we realize that, forh.1/q andk as given in
Eq. (40), the sums in both the numerator and the denomina-
tor are dominated by values ofl !q, where we can replace

f1 − lhgk . exph− hklj

. exph− f1 − gsq,adgfln q + ln ln q + aglj

. F 1

q ln q
qgsq,ade−aG l

s42d

FIG. 6. Computation of the location of the type-II instability
point in 3-COL on Erdös-Rënyi graphs. One findscm.4.51.

TABLE III. Critical connectivities of the coloring problem on
Erdös-Rényi graphs.

q cd cm cq cSP

3 4.42 4.51 4.69 5.01

4 8.27 8.34 8.90 10.21

5 12.67 12.67 13.69 17.1
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up to neglectable corrections. Note the change in notation
from gsq,cd to gsq,ad. Plugging this into Eq.(41), we find

1 − gsq,ad .
1

ln q
qgsq,ade−a

exph− 1
ln qqgsq,ade−aj

1 − exph− 1
ln qqgsq,ade−aj

. 1 −
1

2 ln q
qgsq,ade−a. s43d

This equation closes forgsq,ad=gsad / ln q, with the
condition

gsade−gsad =
1

2
e−a. s44d

The maximum of the left-hand side is 1/e for g=1, i.e., a
real solution forgsad exists if and only ifa.1−ln 2. We
thus find the dynamical transition in the 1RSB approach at

cd = qfln q + ln ln q + 1 − ln 2 +os1dg,

hd =
1

q
F1 −

1

ln q
+ osln q−1dG . s45d

The result is equally valid for Poissonian random graphs.
This can be understood immediately: Degree fluctuations are
of OsÎcd=OsÎq ln qd, and they are thus neglectable com-
pared to the contributions in Eq.(40).

B. The COL/UNCOL transition in 1RSB approximation

From the upper bound of Łuczak and the lower one of
Achlioptas and Naor we know that

cq . 2q ln q − ln q + Os1d. s46d

We are going to rederive this result from the cavity equa-
tions, and we also determine the previously unknownOs1d
contribution. Observing that, under this scaling of the degree,
the contributions in the self-consistency equation(41) be-
have asf1−lhgk,q−2l, we find

h =
1

q
S1 −

1

2
sq − 1dF1 − 2h

1 − h
GkD + Osq−3d

=
1

q
S1 −

1

2
sq − 1dexpH− kh −

3

2
kh2JD + Osq−3d.

s47d

This equation is solved by

h =
1

q
−

1

2q2 +
3 ln q

2q3 + Osq−3d, s48d

independently on theOs1d term in Eq.(46). This value has to
be plugged into the expression for the complexity,

S = lnFo
l=0

q−1

s− 1dls q
l+1df1 − sl + 1dhgcG −

c

2
lns1 − qh2d,

s49d

in order to determine the critical pointcq of the COL/
UNCOL transition from the vanishing ofS. Keeping only

the three dominant terms inq, we immediately find

cq . 2q ln q − ln q − 1 +os1d. s50d

The result is equally valid for Poissonian graphs, and it co-
incides precisely with the upper bound of Łuczak, i.e., his
improved annealed approximation is asymptotically exact. It
is, however, also only one larger than the conjectured lower
bound by Achlioptas and Naor. In this way we see that the
1RSB approach is not only consistent with the mathematical
bound, but allows for a more precise(even if not rigorous)
determination of the threshold value.

C. Asymptotic stability

To check the validity of the above results, we have to
certify that the 1RSB solution is locally stable. Again we
discuss only the case of the regular random graph of degree
c=k+1, but the results do not differ in the Poissonian case.

1. Instability of type I

Let us first start with the instability of type I. To do so, we
should compute the eigenvalues of the stability matrix de-
rived in Sec. IV. For average connectivitiesc@q, the recur-
sion equation(15) is dominated by the first contribution in
both the numerator and the denominator, leading torshd
=dsh−1/qd in leading order. Corrections are exponentially
small in c/q and can thus be neglected. More precisely, tak-
ing the asymptoticc@q results of Eq.(14) and then using
the fact that all colors on all branches except the perturbed
one share the sameh, one obtains

h0
t .

s1 − h1
tds1 − hdk−1

os=1

q
s1 − h1

sds1 − hdk−1
=

s1 − h1
td

os=1

q
s1 − h1

sd
. s51d

We immediately compute the derivativesus]h0
1/]h1

1duh1
s;h

and us]h0
1/]h1

2duh1
s;h that form the entries of the Jacobian

matrix T given in Eq.(23):

U ]h0
1

]h1
1U

h1
s;h

= −
1

q
, U ]h0

1

]h1
2U

h1
s;h

=
1

qsq − 1d
. s52d

Using eigenvalues(26), we finally find forc@q

l1 =US ]h0
1

]h1
1 −

]h0
1

]h1
2DU

h1
s;h

. −
1

q − 1
,

l2 =US ]h0
1

]h1
1 + sq − 1d

]h0
1

]h1
2DU

h1
s;h

. 0. s53d

Therefore, the stability criterion reads

k

sq − 1d2 , 1 s54d

such that the instability appears at connectivity greater than

cSP= s1 − qd2 + 1 . q2 − 2q + 2 +os1d. s55d

In fact, this formula gives very good results even at smallq
for both Erdös-Rényi and regular random graphs. The reason
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why it is working so well is that we are considering connec-
tivities growing like q2, so the conditionc@q is satisfied
very fast.

The dominant contributions give always an integercSP. In
particular in the case of regular graphs it is therefore impor-
tant to know at least the sign of the next-order term. Numeri-
cally we find this to be positive for arbitraryq. Since we
definecSP as the first unstable connectivity, we should there-
fore write

cSP
fixed = sq − 1d2 + 2. s56d

This formula amazingly appears to be exact even forq=3.
Note that, due to itsq2 dependence, as compared to the order
q ln q of the q-COL/UNCOL transition, this instability is al-
ways located in the UNCOL phase and is thus irrelevant to
the physics of the problem. It is however useful since it tells
us when the SP equations aty=` stop to converge on a
single graph. The finiteq result is also extremely well ap-
proximated by thec@q limit in the case of fluctuating con-
nectivities, giving

cSP
ER = 1 + sq − 1d2 + os1d. s57d

2. Instability of type II

Finally, we have also to check if a type II instability ex-
ists. To do so, we start our investigation close to the cluster-
ing transition, i.e., we go back to the scaling

k = qfln q + ln ln q + ag. s58d

As shown before, this results in

h =
1

q
F1 −

g

ln q
+ osln q−1dG , s59d

whereg is the smaller of the two solutions of 2ge−g=e−a.
The stability criterion(38) reads

ltype II = ksq − 1d
ol=0

q−2
s− 1dls q−2

l df1 − sl + 2dhgk−1

ol=0

q−1
s− 1dls q

l+1df1 − sl + 1dhgk
, 1.

s60d

Plugging in Eqs.(58) and(59), and keeping only the leading
order terms, we find

ltype II = eg−a + OS ln ln q

ln q
D . s61d

For sufficiently largeq, this becomes smaller than one if and
only if eg−a,1 which, according to the condition forg,
holds for all a.1/2. We therefore conclude that 1RSB is
stable for all connectivities larger than

cm = qFln q + ln ln q +
1

2
+ os1dG . s62d

This value is slightly larger than the one ofcd, i.e., there is a
linearly growing gap between the onset of a nontrivial 1RSB
solution and its stability. Note, however, that the relative dis-
tance of both expressions is decreasing, the two leading
terms incd andcm coincide.

It is very interesting to compare this behavior with the
best lower bounds obtained from heuristic algorithms. As
discussed in more detail in the introduction, these have the
leading termq ln q. This results supports the intuitive feeling
that local linear-time algorithms are not able to enter the
clustered phase due to the proliferation of metastable states
of nonzero energy. It would be interesting to understand bet-
ter the influence of the structure of the energy landscape on
the behavior of local algorithms, because this interplay be-
tween static and dynamic features may be a useful tool in
systematically improving algorithms.

Note in this context also that the clustered phase covers
half of the COL phase for largeq. This means that, compared
to, e.g.,q=3, the influence of the clustering phenomenon
becomes asymptotically more and more important. In this
sense, a full understanding of the clustering phenomenon be-
yond the 1RSB approximation is of crucial interest.

VII. THE FINITE ENERGY PHASE DIAGRAM

It is very interesting to consider also finite-energy states,
both for physical and computer science motivations. Indeed,
the nature of these states and their degree of RSB provide
some crucial information for the physical picture of the
model and for its finite-temperature phase transition. Ther-
modynamically, the anti-ferromagnetic Potts model on ran-
dom graphs behaves, in fact, similar to a Potts glass[39,40]
and it is thus interestingper se. For instance, one would like
to know if, depending on the number of colors and on the
connectivity, the system behaves as ap-spin model and has a
1RSB transition, or as the Sherrington-Kirkpatrick model
which has a continuous transition. From the point of view of
combinatorial optimization, it is also widely believed that the
time dependence of local search algorithm, and the perfor-
mance they may reach, is also related to the structure of the
energy landscape[36–38]. It has been shown very recently
that it is possible to predict a threshold where a slow anneal-
ing will end [14] using the statistical physics information on
the nature of excited states.

The basic question we will answer in this section follows
from Ref. [13], where the complexitySsed where computed
using the 1RSB solution. We know now that the 1RSB solu-
tion is in fact not always correct, so we would like to know
which part of the complexity curve is correct and which part
is not.

A. Regular random graphs

Let us first consider regular graphs. In Fig. 7, we plot
complexity versus energy, i.e., the logarithm of the number
of states, divided byN, versus their energy, for 3-COL on
five regular graphs, and for 4-COL on nine regular graphs.
Both cases are in the COL phase which impliesSse=0dù0.
We already showed in this paper that the 1RSB approach is
stable for these two cases ate=0, and therefore the compu-
tation of Sse=0d is correct.

Extending our work frome=0 to positive energies, we
indeed find that only the type-II instability is relevant in the
physical part of the phase diagram(i.e., where complexity is
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non-negative). Using Eq.(34) at finite y, we observe that a
large part of the positive-energy solution is 1RSB unstable,
i.e., only a small fraction of the complexity curve close to the
ground state is exact. Therefore, using the notationeG (for
Gardner energy[34]) for the highest energy for which 1RSB
is stable, the 1RSB computation of the complexity is only
valid for energies 0,e,eG, and should be modified for
eG,e,ed.

Two questions arise. First, how to compute the correct
complexity when 1RSB is unstable¿ Of course, it is in prin-
ciple possible to use a 2RSB ansatz, but this is technically
much more demanding, and again the stability towards 3RSB
should be tested. It is still a matter of debate how to modify
the complexity when 1RSB is unstable: The usual paradigm
is that, if not described by 1RSB, then states should be de-
scribed by a full RSB ansatz(since all known 1RSB unstable
models seem to be described by full RSB). Assuming that
this is indeed the case, we have to face the question of the
complexity of full RSB states, which again is still very con-
troversial. While some authors argue that full RSB states
have a vanishing complexities, the question remains un-
solved and has recently seen a renewed interest(see
Ref. [41]).

Another very important question, using these complexity
curves, would be to predict dynamical thresholds, as in Ref.
[14]. That would be a very natural extension of this work to
dynamical studies.

B. Erdös-Rényi random graphs

For Erdös-Rényi random graph, we concentrate on
3-COL. Instead of showing further complexity curves, we
prefer to display, in Fig. 8, a phase diagram which we think
contains a good summary of this work. The following points
are to be commented on.

First, in full line, we display the ground state energyeg.s.
versus the average connectivityc. It is zero belowcq, in the
COL phase, and positive whenc.cq.4.69, i.e., in the
UNCOL phase. This has been calculated using the energies
for which the complexity is exactly zero.

The energyed is the threshold energy, i.e., the energy
below which the clustering transition appears, and where
replica symmetry is broken. In 1RSB approximation, it is
nonzero forc.cd.4.42.

The energyeG is the Gardner energy, which tell us where
the clustering phenomenon becomes 1RSB unstable. For
eg.s.,e,eG, states are 1RSB stable, whereas they are un-
stable foreG,e,ed. This energy line starts atcm (note that
cd,cm,cq) and allows us to determine in which zone of
this phase diagram 1RSB is correct. It crosses the ground
state energy line atcG.5.08 (we use again the terminology
of Ref. [17]; cG stand for Gardner connectivity). Therefore,
for c.cG, the problem is never 1RSB(at least for physical,
i.e., positive-complexity solutions).

Going back to thee=0 line, we have finally, in the
UNCOL phase, the point where the SP equations stop to
converge on a single graph. This happens for allcùcSP
.5.01.

VIII. CONCLUSION

In this paper we have studied in detail the limits of 1RSB
approximation for theq-coloring problem on random graph

FIG. 7. (Color online) Complexity 1RSB and its 1RSB stable
portion for the three-coloring problem on graph with fixed connec-
tivity c=5 (left), an for the the four-coloring atc=9. Both system
are in the COL phase, and ground state, as well as low-energy
states, are described by a 1RSB ansatz. However, at high energy,
when e.em, excited states should be described by a different an-
satz, probably F-RSB.

FIG. 8. Finite energy phase diagram of the three coloring.eg.s.

gives the ground-state energy density,eG the energy density of the
1RSB stable states of highest energy, anded the threshold energy in
the 1RSB approximation, i.e., the energy below which a 1RSB so-
lution exists.
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of both fixed and Poissonian degrees. The 1RSB approxima-
tion shows two different kind of instabilities: a type-I insta-
bility where the clusters of solutions tend to aggregate, and a
type-II instability where solutions inside a cluster form fur-
ther levels of clusterization. In the colorable phase, we find
in particular the latter kind of instability. Luckily enough, at
anyqù3, the COL/UNCOL transition is found in the 1RSB
stable region, making it plausible that the values presented in
Tables II and III are in fact the trueq-COL/UNCOL
thresholds.

In the limit of q→` many simplifications can be done in
the calculation, allowing for a fully analytic treatment of the
problem, and also for checking our results against the rigor-
ous ones presented in Refs.[5,6]. We find the COL/UNCOL
threshold to be asymptoticallycq=2q ln q−ln q−1+os1d
which, on the one hand, coincides precisely with the rigorous
upper bound of Łuczac[5], which, on the other hand, differs
only one from the lower bound of Achlioptas and Naor[6].
All these findings are good news for the 1RSB cavity ap-
proach, that not only turns out to be consistent with indepen-
dently established rigorous mathematical results, but also al-
lows for sharper, though not rigorous, determination of
threshold values.

There are several lines in which the work presented here
could be extended. The most straightforward direction is
probably the question of how to implement a 2RSB calcula-
tion, in order to understand the phase-space structure in the
1RSB unstable region, and to see in how far the 1RSB ap-
proximations for the clustering transition, the complexity and
the threshold energy have to be changed.

A second interesting direction concerns the connection
between the failure of linear-time algorithms and the onset of
clustering. Even if a connection between both seems pretty
intuitive due to the existence of exponentially many meta-
stable states, one should keep in mind that algorithms do not
follow a physical dynamics with detailed balance, etc. The
connection between the energy landscape and the configura-
tions explored by the algorithm is therefore far from beeing
obvious. Even if so far no local linear-time algorithms were
found that solveq-COL inside the 1RSB stable region, their
mathematical analysis has no obvious connection to the land-
scape properties of the model. It would therefore be ex-
tremely interesting to either establish this connection or to
prove its nonexistence.

ACKNOWLEDGMENTS

We thank M. Mézard, F. Ricci-Tersenghi, O. Rivoire, and
R. Zecchina for useful and cheerful discussions. We also
thank the hospitality of the ICTP Trieste, and two of us(F.K.
and M.W.) thank the hospitality of the ISI in Torino, where
part of this work was done. We acknowledge support from
the ISI Foundation, the EXYSTENCE Network, and from
European Community’s Human Potential program under
Contract Nos. HPRN-CT-2002-00319(STIPCO) and HPRN-
CT-2002-00307(DYGLAGEMEM).

APPENDIX A: INSTABILITY OF THE SECOND KIND

In this appendix we study the eigenvalues of the matrixV
defined by Eq.(29),

Vt→t̃,s→s̃ =
]p0

t→t̃

]p1
s→s̃

. sA1d

To compute this matrix element from Eq.(28) one needs to
consider all configurations of messagesss2, . . . ,sdd on the
incoming links2,3, . . ,d such that(a) if the incoming warn-
ing on link 1 is given bys, the warningt is induced at the
output and(b) if the incoming warning on link 1 is given by
s̃, the warningt̃ is induced at the output. Since we haveq
+1 different messages labeled by 0, . . . ,q, we have to deal
with a qsq+1d3qsq+1d matrix.

A physical interpretation of recursion(8) is that, when a

site is exposed to aq-component fieldhW =sh1, . . . ,hqd (entries
are all negative or zero, reflecting the antiferromagnetic na-
ture of the Hamiltonian) then(i) if there is a unique maximal
field componentht, the site will send a message −eWt saying
“do not take colort” via the outgoing link(in the following
we call this a warning of colort) and(ii ) it will send a zero
message otherwise. Let us study all elements, case by case,
first when a zero message is changed to a messenger with a
color, then a color is changed into another one.

1. Changing 0 to a colored message (or a color to 0)

When one changes one input message 0 to a colored one,
e.g., −eW1, it can be shown that most corresponding matrix
elements vanish. A simple way to show it is the following:
Consider link one, where we are changing the incoming mes-
sage, and the otherd−1 incoming links. In the first configu-
ration, link one is sending a 0, so it hasno effect. The other

d−1 incoming messages induce a fieldhW. If we turn now the
message 0 on branch one to −eW1, this has the effect of de-
creasing field componenth1 by one. The outgoing message is
nonzero only if there is a unique maximum field, this change
has no effect at all ifh1 was not a maximum field compo-
nent. To obtain nonzero matrix elements, we thus have to
consider only situations in which thish1 was a maximum
field before changing the first message.

Two cases arise.
(1) First, if h1 was theonly maximum component before

the change, then the output wase1 in the first configuration.
Adding a new incoming message of color one decreasesh1

by one unit. Now eitherh1 is still the unique maximum, and
nothing has changed, or it now equals to another field, say
h2, and the new outgoing message becomes 0. There is thus
a finite probability to change the input from color 1 to 0 by
changing an input 0 to color 1.

(2) Second, ifh1 was not the maximum field and if they
were two such maximum fields, sayh1 andh2, then adding
an incoming message of color 1 forcesh1 to decrease, and
thereforeh2 may become the only maximum and the new
output is −eW2.

There are thus only two nonzero terms, that we will call
A andB:

A = V0→2,0→1,
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B = V1→0,0→1. sA2d

All other nonzero terms having a zero input changed to a
colored one, result from simple color permutations and equal
the two described ones. Note that similar equations can be
written when one changes an input of color 1 to 0. In this
case the only nonzero terms are given by

A8 = V2→0,1→0,

B8 = V0→1,1→0. sA3d

The values ofA, A8, B, andB8 are associated to the two

following situations(considering the set of fieldshW resulting
from the otherd−1 incoming messages): (a) Asq,hhjd and
A8sq,hhjd are probabilities of havingh1 and h2 as the two
only maximum field and(b) Bsq,hhjd andB8sq,hhjd are the
probability of havingh1 as the maximum field, and that at
least one other field with valueh=h1−1 exists. To obtain the
final matrix element one has to put the reweighting factor
corresponding the to second configuration, therefore we find

Asq,hhjd = A8sq,hhjd

= C0 o
sh3,. . .,hq.h1=h2d

P̃sh1,h2,h3, . . . ,hqdeyh2
,

sA4d

B8sq,hhjd = C0 o
sh2,. . .,hq.h1d

fh1−1=maxsh2,h3,. . .,hqdg

P̃sh1,h2,h3, . . . ,hqdeyh1
,

Bsq,hhjd = C0 o
sh2,. . .,hq.h1d

fh1−1=maxsh2,h3,. . .,hqdg

P̃sh1,h2,h3, . . . ,hqdeysh1−1d,

where we have introduced, following Ref.[13], the notation

P̃shWd as the probability of having a configuration of messages

that gives a set of fieldshW before any reweighting is done.

Thus P̃shWd would result from Eq.(17) by settingy=0. This
notation will be of great use in the computation of Appendix

A. Note that, to computeP̃shWd we consider here only mes-
sages arriving from thed−1 unchanged links2,3, . . . ,d.

Finally, another very important property for the structure
of the matrix is that, by changing 0 tos̃, one cannot change
a colort to another colort̃ in the output. This will turn out to
considerably simplify the problem.

2. Changing one color to another color

We now consider a change of the first incoming message
from color 1 to color 2. One can show, using similar kind of
reasoning, that V1→2,1→2=V3→2,1→2=V1→3,1→2=V2→3,1→2
=V3→1,1→2=0 and thatV2→1,1→2=A. Having in mind these
relations, we can now write the stability matrix.

3. The stability matrix V

We write the stability matrixV in a way that justifies why
we did not care about some terms in the previous section. In

the base we chose, the matrix is block triangular, so we will
need only to care of diagonal block matrices to compute
eigenvalues(since, in a triangular block matrix, eigenvalues
are eigenvalues of the diagonal matrices). We write

V =







s0,edse,0d se,e8d

q5
s0,e1d
s0,e2d

. . .

s0,eqd
6

M W

q5
se1,0d
se2,0d

. . .

seq,0d
6

qsq − 1d5
se1,e2d
se2,e3d

. . .

se3,e2d
se2,e1d

6 0 Z 





, sA5d

whereM andZ can be written

M = 3
0 A . . . A B8 0 . . . 0

A 0 . . . A 0 B8 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

A A . . . 0 0 0 . . . B8

B 0 . . . 0 0 A . . . A
0 B . . . 0 A 0 . . . A
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . B A A . . . 0

4
and

Z =3
0 . . . 0 A
0 . . . A 0

. . . . . . . . . . . .

A . . . 0 0
4 .

4. Eigenvalue analysis

We are now ready to find the biggest eigenvalues of the
matrix V, which will be the biggest of all eigenvalues fromZ
and M. The matrix Z has sq2−qd /2 eigenvalues −A, and
sq2−qd /2 eigenvaluesA. Eigenvalues ofM can be easily
studied using again its block matrix structure; the biggest one
is found to besq−1dA+ÎBB8. Thus the biggest eigenvalue
of the whole stability matrix is
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l = sq − 1dAsq,hhjd + ÎBsq,hhjdB8sq,hhjd, sA6d

whereA, B, andB8 are defined by Eq.(A4). In they=` case,
new simplification arises becauseB is associated with con-
tradicting messages and it is annihilated by its reweighting
factor. Thus

ly→` = sq − 1dAy=`sq,hhjd, sA7d

whereAy=`sq,hhjd may be explicitly computed(see Appen-
dix B) and reads

Ay=`sq,hhjd =
ol=0

q−2
s− 1dls q−2

l dpi=2

k
f1 − sl + 2dhig

ol=0

q−1
s− 1dls q

l+1dpi=1

k
f1 − sl + 1dhig

.

sA8d

APPENDIX B: INSTABILITY OF THE SECOND KIND AT
y=`

Let us concentrate on thecolorable phase, where the
ground states are characterized byy=`. Here we give an
explicit computation ofAy=`. Let us concentrate for the deri-
vation for 3-COL. Following the notation of Appendix B, we

denoteP̃shWd the probability of having a configuration ofd

warnings that sum up to the fieldhW without reweighting. It
has no direct physical meaning but it is of great technical
help in the present computation, see Ref.[13].

We first need to calculate the value of the normalization
constantC0 in the y→` limit. Since reweighting is killing
any term with positive energy shift, the only surviving terms
in the recursion are those where all fields have at least one
zero component, allowing for the selecting of at least one
color without violating an edge. The normalization factor
thus reads

1

C0
= P̃s0,0,0d + 3 o

h1,0

P̃sh1,0,0d + 3 o
h1,h2,0

P̃sh1,h2,0d,

sB1d

where the combinatorial factors 3 appearing on the right-

hand side are obtained by noting thatP̃sh,0 ,0d= P̃s0,h,0d
= P̃s0,0,hd and thatP̃sh1,h2,0d= P̃sh1,0 ,h2d= P̃s0,h1,h2d.

Now, we need to compute the expression forA from Eq.
(A4), summing this time only over thed−1 incoming warn-

ings2,3, . . . , d2,3, in the computation ofP̃ in the numerator

Asq,hhjd = C0 o
sh3,. . .,hq,h1=h2=0d

P̃sh1 = 0,h2 = 0,h3, . . . ,hqd.

sB2d

Therefore,Asq,hhjd is easily computed once the expres-

sion of P̃ for a given number ofd branches are known. Using
the cavity recursion equations, one can show that, when sum-
ming overd neighbors

P̃s0,0,0d = p
i=1

k

s1 − 3hid, sB3d

o
h3,0

P̃sh3,0,0d = p
i=1

k

s1 − 2hid − P̃s0,0,0d

= p
i=1

k

s1 − 2hid − p
i=1

k

s1 − 3hid, sB4d

o
h1,h2,0

P̃sh1,h2,0d = p
i=1

k

s1 − hid − 2 o
h1,0

P̃sh1,0,0d − P̃s0,0,0d

= p
i=1

k

s1 − hid − 2p
i=1

k

s1 − 2hid

+ p
i=1

k

s1 − 3hid. sB5d

Using these relations, with the proper product over thed
or d−1 incoming messages, we immediately get from Eq.
(B2)

Ay=`sq = 3,hhjd

=
pi=2

k
s1 − 2hid − pi=2

k
s1 − 3hid

3pi=1

k
s1 − hid − 3pi=1

k
s1 − 2hid + pi=1

k
s1 − 3hid

.

sB6d

This equation can be easily generalized to an arbitrary num-
ber q of colors, and we find

Ay=`sq,hhjd =
ol=0

q−2
s− 1dls q−2

l dpi=2

k
f1 − sl + 2dhig

ol=0

q−1
s− 1dls q

l+1dpi=1

k
f1 − sl + 1dhig

.

sB7d
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