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We consider the problem of coloring Erdés-Rényi and regular random graphs of finite connectivitg using
colors. It has been studied so far using the cavity approach within the so-called one-step replica symmetry
breaking(1RSB) ansatz. We derive a general criterion for the validity of this ansatz and, applying it to the
ground state, we provide evidence that the 1RSB solution gixastthreshold valueg, for the transition
from the colorable to the uncolorable phase wijtkolors. We also study the asymptotic thresholdsderl
finding cy=2qIng-Ing-1+o(1) in perfect agreement with rigorous mathematical bounds, as well as the
nature of excited states, and give a global phase diagram of the problem.
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[. INTRODUCTION showed thaty colors arenot sufficient for almost all graphs
with c=2qIng-Ing-1+0(1). Rephrased in terms of the
The graph coloring probleCOL) has been studied both g-COL/UNCOL thresholdc,, he thus proved the upper
in combinatorics[1] and in statistical physicg2]. Given a  boundcy<2qIng-Ing-1+o(1). Very recently Achlioptas
graph, or a lattice, and given a numlsgof available colors, and Naor[6] put a rigorous lower bound on the threshold
the problem consists in assigning a color to each vertex sucttsing the second moment method. They showed that
that no edge has two equally colored end vertices. For & 2qIng-2Ing+o(1), but their method in fact leads to an
given graph, one quantity of interest is thereby the minimakven better conjectured lower bourmg=2qInqg-Ing-2
number of colors needed, i.e., the so-called chromatid-0(1) [7] which differs by just 1 from tuczak's upper
number. bound. So, up to these small intervals, the exact and unique
In this paper we are going to consider COL as applied tovalue of the chromatic number is known by now. Inside these
random graphs of fluctuating as well as of fixed connectivity.intervals, even more powerful methods are needed to deter-
In fact, determining their chromatic number is one of themine the chromatic number and thus the COL/UNCOL
most fundamental open problems in random-graph theorghreshold.
[3]. It has attracted considerable interest also within the the- If one considers, on the other hand, the performance of
oretical computer-science literature: COL is one of the basidinear-time algorithmsg colorings can be easily constructed
NP-hard problems which form the very core of complexity up to connectivityc=qInq, i.e., only in roughly the first
theory [1]. Defined on random graphs, the problem showshalf of the colorable phase. It is simple to design algorithms
interesting phase transitions at the so-catiegdOL/UNCOL  working up toc=(1-¢)qlng, for any £>0, whereas no
thresholdsc,: Graphs of average connectivity<c, owe linear-time algorithm is known which works also for connec-
proper g colorings with high probability(approaching one tivity c=(1+¢)qlinqg [8-1(. The very existence of linear
for graph sizeN— o), whereas graphs of higher connectivity algorithms working also beyond this point is considered as
require more tham colors. This transition is connected to a another major open questigfl] within the field.
pronounced peak in the numerical resolution time, i.e., in the Recently, the problem has been reconsidered using tools
time needed to either constructgacoloring or to prove its  borrowed from statistical mechanics of disordered systems
nonexistence. The hardest to solve problems are typicallyl2,13. In this way both questions, i.e., the location of the
situated close to the phase boundary. g-COL/UNCOL threshold and the reason for the failure of
One of the first important mathematical resultsde€COL  linear-time algorithms well before this threshold, have fur-
on Erdds-Rényi random grap¥] of average connectivitgy  ther approached an answer, though not on completely rigor-
was obtained by tuczak more than one decade[&f)joHe ous grounds. Within the 1RSB approach, the
showed in particular that, for a random graph of given finiteq-COL/UNCOL transitionc, can be determined for an arbi-
average connectivitg, the chromatic number takes one out trary number of colors). Moreover, the 1RSB approach pre-
of only two possible consecutive values with high probabil-dicts a connectivity regiorty<c<c, inside the colorable
ity. Even if he was not yet able to determine these values, hphase, where solutions are nontrivially organized in clusters,
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an exponential number of metastable states and large enex-physicist’s language, the Hamiltonian describes an antifer-
getic barriers exist. This clustering phenomenon—romagneticg-state Potts model on the gragh
intuitively—causes local algorithms to get stuck, see Ref. The aim within the statistical mechanics approach is to
[14] for recent results. study the ground state properties of this model: If the
All these results were derived with the cavity method inground-state energy equals zero, the graph is colorable. The
1RSB approximatiofil 5] which makes strong hypotheses on ground-state entropy determines the number of colorings,
the phase space structure of the problem. The computation &d the order parameter, see below, characterizes the statis-
further on heuristic in the sense that assumptions are onliical properties of the ensemble of all solutions. If, on the
checked self-consistently, but its predictions are confirmedther hand, the ground-state energy becomes positive, we
by independent numerical tests. Very recently a number oknow that there are no proper colorings. The graph is uncol-
papers have put under scrutiny the clustering hypothesis iorable withq colors.
glass models on the Bethe latti5], in some combinatorial
optimization problems like the random satisfiability of a for- B. Erdds-Rényi random graphs and regular random graphs

mula made of the conjunction of clauses of inclusive or ex- \ve consider the graph coloring problem on two different
clusive disjunctive combination oK boolean variable yandom-graph ensembles. The first one is the ensemble
(K-SAT and K-XORSAT) as well as in polymer problems ¢(N,c/(N-1)) first introduced by Erdés and Rényi in the
[20]. They analyze the possibility of more complex pattemsiate 1950's[4]. A graph from this ensemble consists Nf
of clusterization due to local instabilities. verticesj=1, ... N. Between each pair,j of vertices, with

In this work we investigate these instabilities for the col—i<j, an undirected edge is drawn randomly and indepen-
oring problem. We thereby show that a small part of thegently with probabilityc/(N-1). The vertices remains un-
1RSB solution of Refs[12,13 close to the onset of the .ynnected by a direct edge with probability d4N-1).

clustered phase tumns out to be unstable. Interestingly ore \ve are mainly interested in the thermodynamic limit
enough, however, thg-COL/UNCOL transition is in the N—, i.e., we describe large graphs of finieThe average

stable region at any, and thus .the 1RSB threshold refs_ults ertex degree, which equals the expected number of edges
are expected to be exact. We will also analyze the stability of,ijent to an arbitrary vertex, is easily calculated (A5
the coloring problem on fixed connectivity random graphs,_l)_c/(N_l):C, and it remains finite in the larg-limit.

which is somehow easier to deal with analytically. There are, however, degree fluctuations for every fiaite

The outline of the paper is as follows. Section Il properlyfact, in the thermodynamic limit, the probability that a ran-

defines the problem under investigation, and reviews th%lomly selected vertex has degréeis given by the Poisso-
1RSB approach. In Sec. Il we set up the general formalism ian distribution ’

for the stability analysis. The most relevant consequences of
this approach for a small number of available colors are then _cd
presented in Sec. IV for the type-I instability, and in Sec. V Pg=e CE (2
for the one of type Il. Section VI is devoted to the high '
analysis of the model while, in Sec. VII, we finally consider of meanc. Another crucial point for our analysis is that, for
the problem at finite energies. Conclusions and perspectivdiite ¢, the number of triangles or other short loops in the
are drawn in Sec. VIII. graph remains finite in the largedimit. This means that the
graph is almost everywhere locally treelike, i.e., on finite
length scales it looks like a tree. Foe>1, there exists an
[l. THE MODEL AND ITS 1RSB SOLUTION extensive number of loops. These have, however, length
O(In N), and become infinitely long faN — oo,
) o The second ensemble is denoted §yyN), and contains
Let us start with a proper definition of the problem. We 4| ¢_regular graphs ofN vertices, where has to be a posi-
consider a graphG=(V,£) defined by its verticesV e integer in this case. A graph is calledregular if and
={1,....N} and undirected edge§,j) & which connect ony if all vertices have the same degreeé.e., here we have
pairs of vertices,j e ). A graphq coloring is a mapping
o:V—{1,... g} which assigns colors 1, ..q to all vertices, pq = &(d,c). 3
such that no edges are monochromatic. For all edgg$

A. The graph coloring problem

A random regular graph is one randomly selected element of
e & we have therefore; # oj. .. this ensemble. This guarantees again that the graph becomes
~ Within the statistical-mechanics approach, a Hamiltoniangca)ly treelike. Note that due to the constant vertex degree,
is assigned to this problem such thatgdolorings are found  {hage graphs look locally homogeneous, on finite length

as ground states. For any color assignment, i{ei;  gcales they do not show any disorder. The random character

€{1,2,... g for all i e V, we therefore define of regular graphs enters only via the long loops which are
_ again of lengthO(In N). In the statistical physics literature,
He= (ijég o, 07) @D i particular in the theory of disordered and glassy systems,
’ random graphs are considered as one valid definition of a
with &(---,--+) denoting the Kronecker symbol. This Hamil- Bethe lattice.

tonian counts the number of monochromatically colored In a slightly more general context, both random graph
edges, a proper coloring of the graph thus has zero energy. Bnsembles defined before can be embedded into the en-
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[21,22. For these graphs, only, is defined, and each graph

having the desired degree distribution is considered to be

equiprobable. In this sense, all results formulated below can w<slh- i \ex i 6

be directly generalized to arbitrary degree distributions. k%i)\j k yo k%i)\j i ©

Sometimes the formulation will even be given in this con-

text, but the concrete analysis will be restricted to Poissonian

and regular graphs. - (a :fdQHp. (h)&(G - (h)). (7)
For this generalized ensemble, we still introduce the prob- Qi@ o )

ability rq that an arbitrary end-vertex of a randomly selected o

edge has excess degrdgi.e., it is contained ird supple- There theC;_,; are normalization constants, the $t) C&

mentary edges, and its total vertex degred-d. Given the contains all neighbors of vertéxand the functionsi and w

semble of random graphs with given degree distribution - . .
Pi—»j(h):ci—qf|: I1 qukaﬁi(Uk)]

ke V(i)

degree distribution, this probability results as are defined as
w(h)==-min(-h, ... ,—h9),
(d+1)
rg= . pd+1. (4)
0°(h) = w(h— &) - w(h). 8)

Plugging in our special cases, we see that this distributiorhese equations have a very nice interpretation: Aisite
remains Poissonian for Erdos—Renyl graphs, whereas the e¥giyes an incoming fielll as a sum of all but one incoming
cess degrees equal constantlyl in the case of regular \yamnings. This field has either zero or negative entries, re-

graphs. flecting the anti-ferromagnetic character of the interaction.

The maximal field components determine the colors of mini-

mal energy if assigned to If this maximal field component

is unique, a nontrivial message “do not take this unique
The cavity equations for finite-connectivity systems in thecolor” is sent from vertexi to j via the last link. If the

one-step replica-symmetry broken approximation have beemaximal field component is degenerate, the zero message is

originally derived in Refs[15,23. Their single sample ver- sent via linki — j.

sion is usually called survey propagatié®P) and has been Note the appearance of the reweighting paramgtef,

introduced in Refs[24,25 in the case of random 3-SAT. which allows to scan metastable states of different energies.

Here, in order to fix the notation, we will briefly recall the SP It acts similar to the inverse temperature in the usual Boltz-

equations on the 1RSB level farCOL closely following  mann weight: Differeny concentrate the measure on differ-

Refs.[12,13. Note, however, that a complete explanation ofent energy levels, and the limyt— o corresponds to zero-

all technical details is not the scope of this paper, for a deenergy ground states.

tailed presentation please see therefore the original publica- The corresponding-dependent free energy can be calcu-

C. Survey propagation equations forq coloring

tions[12,13. lated as a sum of node and link contributions

The zero-temperature properties of the systemlocal 1
minima ofHg) can be completely characterized by the edge- - = link \,\ _ 1)
dependent probability distributior$i,j) < 1. =N (i%‘;s AW~ 2 @-DEY) | O

q WPEre d is thg degree of vertex. The expressions for
in NO H st
Qi) =0+ S 7 jai+e), (5 4 () andgTy) are given explicitly by
=1

k)= - m( J dhP; _;(M)daQ; ()
where the vectorge,, ... &} form the usualg-dimensional y
canonical Euclidean base set, with componesits&(r, o). - R
The 7;_;’s are positively defined probabilities, normalization xexp{-ylw(h) - w(h + ﬁ)]}> (10)
implies>%,7 ;=1. The distributiorQ;__;(U) is called a sur-
vey, and it describes the probability that, in a suitably chosem@nd by
metastable state, or local minimum Bff;, a warningd is
send from vertex via the edgeli,j) to vertexj. Possible nodg ):_} In(
warnings are the vectorsé-which include a warning that iy

[T d%,Q i)

N T . ke V(i)
assigning colorr to vertexi will cause an energy increase, I
and the zero message=(0, ...,0. In the following, warn- 5 -
ings will frequently denoted simply by their indices ex yw<k§v® uk) ' (1)
=0,... 0

These distributions are self-consistently determined vidrom this free energy we can easily calculate both the com-
the SP equations plexity 2(y) and the energy densig(y),
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LIP(Y) Ayo(y)] probabilities to have an antiferromagnetic message for color
2(y)=-y oy e(y) = Ty 1 7 sent from vertex to vertexj. Using the vectorial notation
where the complexity is defined as the logarithm of the num- D= (D g ), (13

ber of metastable states of enemgy), divided by the num- ) L )
ber N of vertices. and denoting bW/(i)\j={ky, k;, ... Kkq_1} all neighbors ofi

Proper colorings are characterized by the ligit-= of ~ different fromj, we have the closed iteration description
the SP Eqs(6) and (7). In this case, positive energy contri- . - . . .
butions are forbidden and we work directly at zero energy. i = fama (s i - Py 1) (14)
The SP equations can be brought into a much more handy
form: They are reduced to the parametefs , i.e., to the  given componentwise by

T _ T T —1\9-1 0
HkEV(i)\j (1 7]k—>i) 271¢THKEV(i)\j (1 Mk—i 77k1~>i)+ +( 1) erV(i)\j 7]k~>i

T —_—
Mi-j = T T 7 -
- - - - cee g (=10t 0
ElSrlSq erV(i)\j -7t Elsflqzsq erV(i)\j A=-npti-me)+ - +(D erva)\j i

. (19

for all 7e{1,...,9}. The value ofnioﬁj can be calculated to be again a typical survey drawn fro@ Q(0)].

from the normalization constraint. Concentrating on the color-symmetric situation = 7*
The above formalism is formulated for the analysis of a=...=79 the distribution p(7) is reduced to a one-

single (treelike) graph, but it can be easily modified in order dimensionalp(#). The limit y— c of the cavity equations is

to deal with average quantities on the random-graph enreadily obtained:

semblegj[N,c/(N-1)] or G,(N), see Sec. Il B. General con- .

siderations on the existence of a well defined thermodynamic .. - - -

limit [26,27 imply the existence of a functional proba)lgility p(n) zd%rd dnap(70) -+ dnap(0) AL 77 = T, - 770)]

distribution Q[Q(U)] describing how the survey®(l) are -

distributed on the edges of the graph. Noting that a (19)

g-component vectop, is sufficient to describe a survey_.;,  with

we can explicitly writeQ[Q(0)] as

q i )= Lo C V(T (1 -0+ D]
Q[Q(J)]z:quﬂp(ﬂ)5|:Q(G)_ (1_2 7]7') 5(6) d\ 71 -+ yMg) = ?:—(;]_ (_ 1)|<|31)H?:1[1_(| +1)77I] .
% e 20
- gl 7" ou-€,) (16) It is also possible to give a closed expression for the com-

plexity in the COL regionnotice thep, instead offr):
in terms of a simpleg-dimensional probability distribution

p(7), with & -] denoting a functional Dirac distribution. The - R .

SP equationg6) and(7) have to be interpreted in a probabi- 2y=e)= dzlpdf dmp(7y) -+ d7ap(770)

listic way: Drawing first an excess degrdavith probability -

rq, cf. Eq. (4), and thend independently chosen surveys ot d

Q(0), I=1, ... d, from Q[Q], we calculate XIn = (= 1)|(|31)_ 1[1 =(+1)7]
=i i=

Po(h) =C f A9, Q (6y) - - - G, Qu(lig) et c . .
o =% 1Qulth) Q) -3 dmp(70)d7p(72)IN(L =y 7).

d
><5<ﬁ—2 G|>, 17) (21)
=1

D. The qualitative 1RSB picture

Qo(U) = f dhPy(h)s(u - (h)). (18 The formalism summarized above allows to determine not

only the location of thej-COL/UNCOL transition for every
The cavity equation for the functional distribution of surveys(d, but the order parameter also allows us to extract important
closes by the observation that the newly genergld) has  statistical information about structure and organization of the
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Ca Cq - In general, however, the one-step RSB solution of such
@ disordered models has no particular reason to be correct. In

@ some models, the replica symmetry has to be broken infi-
@ @ nitely many times to reach the exact solution. In the language

@ @ & 0 of the cavity method one should thus consider an infinite
hierarchy of nested clusters. This happens, for instance, in

FIG. 1. A pictorial view of the solution space structure. For € Sherrington-KirkpatrickSK) model[28], and Talagrand
small average degreg all solutions(marked by full dotsare col- ~ has recently demonstrated rigorously that the RSB free en-
lected within one large cluster. At some transition paigt this ~ ©€rdy obtained in this way is exaf29]. On the other hand
cluster breaks down into an exponential number of separated clughere are models where 1RSB is not an approximatio_n, and
ters. Beyondc,, i.e., in the UNCOL phase, there are still distinct NO further steps of symmetry breaking are needed. This hap-
ground state clusters, but they have nonzero enémprked by  pens, e.g., in the random-energy mod8D] and in the
empty dots. K-XORSAT problem[31,32 (a problem known in statistical

physics as the diluteg-spin mode). There the 1RSB solu-

solutions. The most interesting point here concerns the set &ON is known to be rigorously exact. _ _
solutions, seen as a subset of glfl possible configurations ~ Here we are going to determine whether, in ¢heoloring

{1,... g\. Every edge of the graph forbids a certain numberProblem, one step of RSB is sufficient or whether more steps
of configurations. For smad, there is, however, still an ex- have to be taken into account to get the correct solution. We

ponentially large number of proper colorings. In addition,d0 this by means of analyzing the stability of the 1RSB

these are organized in a very simple way. They are collecte§Clution against further RSB steps. To be more precise, we
in one very large cluster. For any two solutions, one can finghould formulate a 2RSB solution of the model and see if the

a connecting path via other solutions, without ever changing RSB solution is stable against a small 2RSB perturbation
more than®(1) spins within one step of this path. 33]. This type of local stability analysis has receive a lot of

This changes drastically at some average degge@he interest recently, extending the seminal work of Elisabeth
set of solutions is still exponentially large, but it is split into S2rdner34] to finite connectivity spin glass mode{%8]. It

an also exponential number of clusters. Inside each clustef@s clarified a lot in Ref¢(16,2Q, and a formalism to deal

connecting paths as described above still exist, but any tw¥/ith more general finite-connectivity problems has been es-

clusters have an extensive Hamming distance from eacfPlished by now16,17,19. The coloring problem, as con-

other, see also Fig. 1. Technically the clustering threshgld gidereq here,_wiII allow for nice analytical treatments, in par-
is given by the first appearance of a nontrivial 1RSB squ—tICUIar if considered on regqlar graphs. :
Let us rephrase the stability considerations for our prob-

tion. The number of clusters, or more precisely its logarithm ) o .
P y g lem, following the notation in Refl19]. Using Eq.(16) the

divided byN, is gi by th lexity21 tioned i k . .
vided byN, is given by the complexity21) mentioned in cavity equations for genergl(17) and(18) can be rewritten

the last subsection. ; £ th babilitiesr” 7= | I
Inside these clusters, the first freezing phenomena arjt%i;errergzltc; i:] e probabilities;”, 7=0, ... q only. Formally

found. A large fraction of all vertices is frozen to one color in
all solutions belonging to the same cluster. This color r_ o1, TgEY(oy. ..oy
changes, of course, from cluster to cluster, since the initial =Co 2wt e, (22)
model is color symmetric. Together with this clustering of
ground-states, also an exponential number of metastabihere the sum runs over all possible combinations of input
states appears. These have nonzero energy, but they are loB¥#ssages €0, ...,04=<q which induce the output mes-
minima of Hamiltonian(1). sage labeled byr. Remember that the special cageo
The complexity of solution clusters decreases, until itWhich concentrates on ground states, was given explicitly in
vanishes at,. Beyond this point, the graph is uncolorable. Ed- (19). S o
There are still numerous ground state clusters, which have, The 1RSB solution is given by a color-symmetric distri-
however, nonzero energy but zero Comp|exity_ bution f)(??), deSCfibingﬂ fluctuations from link to link. Let
us, for a moment, consider an arbitrary edgej (together
with a directionn which is characterized by onsingle
Ill. STABILITY CONDITIONS OF THE ONE-STEP RSB y-dependent value of;. In the 1RSB formalism, there are
SOLUTION many (metgstable states. In each of them, this links |
carries exactly one warning corresponding either to one of
There is a growing believe by now that the cavity methodthe colors, or being the zero message. For a randomly se-
gives exact results and not just approximations—providedected state of energy densiy) a specific warning is found
that the replica symmetry is broken in the correct way. Everwith color-independent probability, the trivial message ap-
if a rigorous general proof is still lacking, a number of stepspears in a fraction 1g» of these states. This is schemati-
forward have been made so far in this direction. On this basisally represented on the left side of Fig. 2.
we conjecture that the results concerning the colorability Let us now consider two steps of RSB. There we need to
threshold, as well as many features of the phase diagramake into account the existence of clusters of states. Regard-
(like for instance the existence of the clustering phase ing small perturbations of the 1RSB solution, two situations
exact. are possiblg18].

(0q,...09)—=T
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A. Type-I instability: Aggregation of states and noise
propagation
Let us start with noise propagation. The stability can be

O /.,/ computed from the Jacobian
Aggreg
. O of states &7]8
® ® o= 2 (23)
O ® 971 | 1rsB
o ) - Y which gives the infinitesimal probability that a change in the
ol @ @ input probability 7] will change the output probabilityy, cf.
il o Eqg. (22). The index 1RSB says that the expression has to be
) evaluated at the 1RSB solution found within the cavity ap-

proach. Note that we need to calculate this matrix only for

1<, 7<qsince the probability of the zero message follows

_ S by normalization and thus does not describe an independent
FIG. 2. (Color onling A pictorial view of the two types of quantity. After one iteration, a change of one input message

instabilities of the 1RSB solution, represented here for a given linkgf 5 vertex of degreel induces a change id—1 outgoing

i—] in the three-coloring problem. In each 1RSB states the  messages. The global perturbation aftéterations thus con-

left), this link carries a message of a given color, or no message alarns on averages dr,)" cavity messages, wherg is com-

all (white Clustte.rsthi?e Goinlg frtom a %RS? qu_ZRSE;, these tSt_ateS puted from Eq.(4). To monitor also the strength of the per-
may aggregate into bigger clustétgpe-I instability) or fragment in turbation, we have to calculate

new smaller clustergype-Il instability).

> darg, **~ dofg tH(T1 T2 T2, (24)
dy.-. gy

Type I: States mayggregatein configuration space, see
Fig. 2. In that case the order paramgttll for a fixed link ~ whereTy, ..., T, aren successivel matrices. The notation
i — ) is the probabilityg(#*, ...,7% to randomly select a <~«>,7 denotes the average over the external messages to the
cluster in which there is a fractiop® of states with message nodes 1,...n. To be more precise we should wrifg
—€&, transmitted fromi to j, etc. Note that it is not sufficient =Tq(71,...,7,4). 1., T; depends om; incoming probabili-
to consider a probability distributiog() of a single, color- ties 74, ... g with d; being the excess degree of veriex
symmetric fractionz since the color symmetry can be bro- distributed according tog. Fori=1, all messages are exter-
ken inside a cluster. This is illustrated in Fig. 2. To study thenal. They have to be generated independently from the 1RSB
stability of the 1RSB solution, one should thus write theorder parametep(). Fori>1, the first message described
2RSB equation, insert a perturbed 1RSB solution and see if iy 71 results from nodeé -1 according to Eq(22). The
evolves back to 1RSB. In this case, the 1RSB solution isther inputsz;,, ..., 7,4 are again external and thus inde-

obtain by consideringy(7",...,7)=8(7'~n)---8n'=7).  pendently distributed witiH(7). Note that thez-averaged

To test stability, we thus need to replace the Dirac peaks bynatrix ((TyT, -+ T3, still depends on the random excess
narrow functions of widthe, and to see if the width increases degreedd; ... ,d.. This has to be taken into account in the

or goes to zero during the cavity iteration process. The analys;m in Eq.(24).

sis thus amounts to look if a small noise added to the solu- A simple way to calculate the trace fob> 1 is to consider

tion will vanish. This is equivalent to testing convergence of;o biggest eigenvalue of the mati&T,T,---T,)2),, which
7]1

the SP equations on a single graph. We will refer to this I(mdallows us to use a single number to follow the perturbation.

of analysis as “noise propagation”. Thi :
. is, however, becomes very simple fjCOL. Let us re-
Type II: States may fragment into new states, see th‘?vrite the Jacobian y P

lower right picture in Fig. 2. In the 1RSB solution, a link

— ] carries a message which is uniquely determined within 577(1) 3773 In
one state. If now this state fragments into one cluster of 1 T 1 - 1
many states, also the single message is transformed into a set dm Iy Im
of messages. To introduce a small perturbation of the 1RSB oy In ana
solution, we should assume that, with high probability, the T= 5_77% {9_7’% (9_775 . (25)

states within one cluster are still characterized by the same
message on link—j. In a small fraction of these states,
however, also other messages may appear. The problem is c?né anﬁ ana
now if or if not this perturbation tends to zero under iteration (9_,7(1 (9_7,q (9_,7(1

of the 2RSB equations. The stability analysis thus amounts to Lo ! L J1RsSB
see if a change in one messdgalled a bug in Ref{19]) can  Evaluated at the color-symmetric 1RSB solution, this matrix
propagate through the whole system, or if it remains localhas only two different entries: All diagonal elements are
ized. We will refer to this instability, following the terminol- equal, and all nondiagonal elements are equal. As an imme-
ogy of Ref.[19], as bug proliferation. diate consequence all Jacobians commute and are thus simul-
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taneously diagonalizable. The matiixhas only two distinct (97.,847
eigenvalues Vit " oom (29
it
I I e
M= T3-S , evaluated at the 1RSB solution. Since a message may have
dny 971/ | 1rsB g+ 1 different states and we are considering actual changes in

messagesy is a square matrix of dimensiog(q+1). We
study it in Appendix A and show that its biggest eigenvalues
(26) can be written, at any givey, as a function ofq and

&7]1 &1]1
o= (a—;’+(q—1>—2

7 971/ | 1rsB
M1y -ee7g AS
The second eigenvalue belongs to the homogeneous eigen- /
vector(1, 1,.., 1). It describes a fluctuation changing a, A=(q-DA@Q{7) +vB@a{n)B' (a{7}), (30

7=1,...,q, by the same amount, i.e, a fluctuation maintain- o _ )
ing the color symmetry. The first eigenvalue(ig-1)-fold ~ where A, B, andB" are explicitly given in Eq(A4) in Ap-
degenerate, eigenvectors are spanned(by-1,0,...,0, Pendix A. In the zero-energy case, i.e., for>, this ex-
(0,1,-1,0,...,0...,(0,...,0,1,-1. The corresponding Pression simplifies to
fluctuations explicitly break the color symmetry, and they are o
in fact found to be the critical ones for the instability of the A== DA=(a.{7), (31)
1RSB solution. S

For zero-energy ground states in the COL phase, wher\éVherEAym(q'{”}) 's given by
y=o0, one may proceed using the closed analytical expres- q-2 I q-2\TTd
sion (15) for the iteration. It is possible to explicitly write _ “I=0 (- D' )Hizz[l ~(1+2)7]
down both eigenvalues. We will see in Sec. VI how to derive Ay=(a.{7}) = q-1 (- 1)|( q )Hd [1-(+1)7] '
asymptotic results at largg Finally, to monitor the pertur- 1=0 /2= K

bation, one should consider the dependence of (32
A (n) = dira oo dla Ayr 12 27 The instability with respect to bug proliferation has to be
woe (1) dl'-Z'dn T R 27 determined from a product of such matrices. Proliferation

. ) is monitored, using again E@), by
on the numben of iteration steps. Thergrr,..12 de-
notes the biggest eigenvalue of _maktﬂsz- : -Tn_)2>,7. I_t can > difg - Ol ViV V), (33
be computed as a product of eigenvalues being either all of dy,...dn
type A, or all of type\,. The 1RSB solution is stable against _ ) )
type-| perturbations if and only iy, (n) decays to zero in O, using the eigenvalue notation, by
the largen limit.
)\type Il(n) = E dlrd1 tt dnrdn)\(vlvz--- Vi), (34
B. Type |l instability: Fragmentation of states and bug G-
proliferation where N,v,..v,, is the biggest eigenvalue of matrix

As discussed above, we have to consider bug proliferatioV,V,: - Vy,),. The averages are performed in complete anal-
in order to study the second type of instability, i.e., the in-ogy to averages in the type | case. The 1RSB solution is
stability with respect to fragmentation of states into clustersstable if and only if this eigenvalue decays to zero ffor
of states. Suppose that a message of typie turned into  — oo,
another messagé. This is called a bug in Refl19]. We
suppose it to happen with small probability ~"7<1. As a
consequence, some output messages may change, and the
bug propagates. The system is unstable with respect to type
Il perturbations if such a bug propagates through the whole Using the criteria derived in the previous section, we can
system. now study the stability of the 1RSB solution for the ground

Considering small perturbations, we can work in the lin-states of the coloring problem, i.e., we concentrate first on
ear response regime. For a generic change of the first inpyt—o.. We will, in the following, call csp the connectivity
message in Eq(22), we may calculate the probability of beyond which 1RSB is type | unstable because, as we will
changing the output message see, the SP equations do not converge anymore on a single

graph forc>cgp

IV. STUDY OF THE TYPE-I INSTABILITY: NOISE
PROPAGATION

77(7)'*)”7" - CO 2 WZﬂTrngz . ngdeyw(?r,az,. . .,a'd)'
(.00 A. Regular random graphs
(0,09,....09)—T
(28) In the case of fixed-connectivity graphs all sites are

equivalent, sap does not fluctuate from edge to edge. There-

This defines a matri¥ with entries fore, the recursion equatiqi20) can be simplified to
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TABLE |. Computation of7, %, and\yge | for =3, 4, and 5 L1 g y y g y y o
and various values of the connectivity on regular random graphs. Los | o
g, c phase 7 p3 Niype-I 1}
q=3,c=4 COL 3
gq=3,c=5 COL 1RSB 0.279 0.037 0.688 ‘é
q=3,c=6 UNCOL Instable  0.318 -0.137 1.103
q=3,c=7 UNCOL Instable  0.327 -0.329 1.420 0385
q=4,c=8 COL 0s b
q=4,c=9 COL 1RSB 0.223 0.040 0.764
gq=4,c=10 UNCOL 1RSB 0.236 0.03 0.86 075
g=4,c=11 UNCOL Instable 0.242 -0.216 1.02
q=5,c=12 COL 100
g=5,c=13 COL 1RSB 0.1759  0.0960  0.5605 o0 |
g=5,c=14 COL 1RSB 0.1853 0.00380 0.6788 5 s}
q=5,c=15 UNCOL 1RSB 0.1902 -0.0952 0.775 § 70
g=5,c=16 UNCOL 1RSB 0.1932 -0.1982 0.8622 § 60
q=5,c=17 UNCOL 1RSB 0.1952  -0.3037 0.942 §° so |
g=5,c=18 UNCOL Instable 0.1966 -0.4109 1.017 § 40
§ 30
20
i DL -0+ Dyl S el
n="fi(n = — (35) (

0 L L L . L
4.94 4.95 4.96 4.97 4.98 4.99 5 5.01 5.02 5.03 5.04 5.05
c

=D)L=+ Dyl

with k=c—1. This equation can be easily solved using basic,_ F|'G' 3. (C?Iok: onlmelAnaIyEc_:l_ and .“””.’e”ﬁa' ﬁomp“‘f‘“?“ of
numerical tools. Similar simplifications arise in the compu-1¢ 'ocation of the type 1 instability point in the three coloring on
. . o . . fluctuating connectivities graphs. We fint{3)gp=5.01 in both
tation of the complexity.. Within the 1RSB formalism, it is : . .
. cases, which confirms well that SP equation stop to converge when
therefore very easy to derivg(q,c), to compute the corre- c
sponding complexity, and thus to determine if the graph is in P
the COL phase or not. One finds that that at small connec-
tivities the solution is trivial, i.e.;p=0. Forc=cy the clus-
tering RSB phenomenon occurs, and forc, the graph
becomes uncolorable. To test the validity of the 1RSB ansatz Let us now turn to Erdds-Rényi random graphs. Sites are
we are now going to apply the criteria derived previously.no more equivalent and the order parametgrdluctuate
Due to the fixed vertex degree, there is no need to averageom link to link. We have to be very careful in the disorder
over the site distribution. The stability criterion thus simpli- average in the stability criterion, a detailed description was
fies considerably to given above. The type | instability amounts to see if a small
change iny propagates through the whole system. We saw in
Sec. Il that this can be computed by the study of a Jacobian

B. Fluctuating-connectivity random graphs:
Erdds-Rényi ensemble

oy Ing\? that describes the propagation of a perturbation after one
Nype (1) =K 172 <1. (36)  jteration. The global perturbation afteriteration is moni-
M oM/ lirss tored by the sum of the squares of the perturbed cavity bias,
which behaves as
In Table I, we summarize the values gfand, as well as —
stability criteria, forq=3, 4, and 5. The instability of type | Ntype (M) d1§ ndlrdl dnrdn7‘<<T1Tz"'Tn>2>n’ (37

appears at high connectivity, in the UNCOL phase. So it _ _ _

turns out to be irrelevant in the COL phase. This turns out toVhereér .. 2 is the maximal eigenvalue of thg aver-

be true for arbitrary numbag of colors, see Sec. VI for the age of matrix(T;---T,)%. The system is stable Kiype 1(N)
asymptotic case. However, this instability is directly relevantgoes to zero with, and instable if it diverges. Let us con-
for the behavior of the SP algorithm on single graphs: Whercentrate for a moment on 3-COL: Using the SP equation on
c=cgp SP stops to converge on a single graph. This is acsingle graphs, we saw that the iteration is not converging
tually what the Jacobiai23) implies first of all. We have anymore forc>5.01. Evaluating the stability criterion, we
verified this numerically for 3-COL, SP does not convergewere able to reproduce this number analyticgilge Fig. 3.

on regular graphs of degree equal to or larger than 6. Both methods agrees exactly. We have summarized our result
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TABLE II. Critical connectivities of the coloring problem on RS RSB
fixed connectivities random graphs. ~——IRSB———
Cq Ci Cy Csp
C C c
q G m q SP : : : : > ¢
s 5 5 6 6 €Col Uneol
4 9 9 10 11
5 13 13 15 18 FIG. 4. (Color onling Schematic phase diagram for the coloring
6 17 18 20 27 transition ate=0. At small connectivity, wher <cy the problem is
COL and the space phase is trivial. Then, der cq the phase space
! 21 22 25 38 is broken into many states and RSB appears. In this RSB phase
8 26 27 31 51 there is a one-step RSB zowog=<c<cgp in Which detailed com-
9 31 32 37 66 putations are possible. The COL/UNCOL transition appearing, at
10 36 37 44 83 is always found in this zone. Note that for some connectiviiigs,
11 a1 43 50 102 andcp, are equal.
12 46 48 57 123

represented in the Fig. 4. We have derived the solution of this
problem up tag=200, which allows us to draw a quite com-
plete phase diagram for the problem on finite connectivity
random graphs, see Fig. 5. From this phase diagram, two
important points have to be noticed.

The critical line for the COL/UNCOL transition is always
V. STUDY OF THE TYPE-Il INSTABILITY: in the 1RSB stable zone, and therefore we believe it to be be

BUG PROLIFERATION an exact resu|t_

There are two zones where the 1RSB solution is unstable.

We turn now to the instability of type Il. As before, we _ " : ; o
start with regular random graphs, and then we move tJh'S is happening at high connectivity in the UNCOL phase,

" S o - due to a type-I instability, and also in a small, though grow-
Erdds-Rényi graphs. In Refl8], it is argued that, if IRSB . .
states are instable, then these states should be described l'f@d(mth fgggucm(;_er ﬁf colobjzonte bettweelrlu .thet T)SrtCOL
ing a full RSB ansatz, and therefore are marginally stapl@nd the phases, due fo a type-ll instability.

[35]. The connectivity at which the instability appears was
therefore called, for Cyarginat Although it is not yet clear if
full RSB is needed in the case 1RSB is unstable, we follow
this notation and caklt,, the connectivity at which the type I
instability shows up.

for cgpin the last column of Table Ill. Again, the conclusion
is that the type | instability is irrelevant for the thermody-
namics of the system.

B. Erd6s-Rényi random graphs

Let us now go back to the Erdds-Rényi ensemble. As
mentioned above, the instability is monitored by

A. Regular random graphs

Using again the homogeneous solution, it is very easy to

Unstable zone

write the stability criterion. It readésee Appendix B 2000 - {RSB UNCOL
q-2 — —
oy S V-2
Nype n1=k(q—-1 1 <1 1500 |
o C V(AL -0+ 1)) £
(38  § mwl
with k=c—1. Applying this criterion, it turns out that the
instability does not appear at log: In fact, for q<6, the so0 -
ground state in the COL region is always either RS or 1RSB,
no instability toward 2RSB is observed. However, when
=6, the lowest connectivity for which RSB appears turns out 0 . . . . . . . . .
to be instable. More generally, there is an unstable zone 0 2 40 6 %0 100 120 140 160 180 200
growing with g before the stable 1RSB region is reached. We q
summarize our result for smajlin Table Il. Note thattgis  FG. 5. (Color onling Phase diagram of thg-coloring problem
calculated in 1RSB approximation, if the latter is instable itSon random graphs with fixed connectivities, for 3 to 200 colors.
position may change due to more-step RSB. From bottom to top we have four lines correspondingdocy, cq

The one-step solution is thumt always stable in COL  andcgp The critical linec, that separates the COL and the UNCOL
phase. It seems, however, to be correct close to the COlrégion is always in the stable zone, where we conjecture our results
UNCOL threshold, the result for the latter is therefore con-to be exact. Note however the small, but slowly growing, zone in
jectured to be exact. The global situation is schematicallyhe COL region where the 1RSB computation is unstable.
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FIG. 6. Computation of the location of the type-Il instability
point in 3-COL on Erdds-Rényi graphs. One fingjs=4.51.

)\type II(n) = (q - 1)n 2 dlrd1 e dnrdn

dy,...dy
n S D (T -0+ 2]
X H a-1 I( d
i=1 1=0 (_ 1) (I+1)Hj:1 [1 - (l + 1) 77i,j]
<1, (39

where thed, has the characteristic Poissonian distribulri@in
of averagec. As already explained above, thgvalues are
given in the following way. For the first node 1, all values

of 714,...,7m14, are drawn independently from(7). This
allows us to calculate the first factor in the above product
but also the first input messag@llzfdl(nlyl, ,771,(,1) to
the second node. The othed,—1 input messages

M22: -1 M2, Ar€ drawn again fronp(#). This is repeated

PHYSICAL REVIEW E 70, 046705(2004)

exact

VI. ASYMPTOTIC THRESHOLD VALUES
IN THE HIGH- g LIMIT

Whereas the precise values for transitions and stability
regions of the 1RSB approach have to be determined by
numerically solving the cavity equations, and by plugging
this solution into the stability criteria, an asymptotic analysis
can be carried through analytically in the limit of a large
number of colors, i.e., fog>1. As an astonishing result,
Poissonian and regular random graphs have the same
asymptotic behavior, at least as far as the dominant contribu-
tions are concerned. Degree fluctuations play a role only at
low-order contributions which, due to the complexity of their
determination, are not considered here. To lighten the presen-
tation, we consider therefore only the case of regular graphs,
i.e. of equal vertex degrees=k+1 for all vertices.

As discussed above, in this case the 1RSB solution is
factorized and thus completely determined by a single edge-
and color-independeny. A basic numerical observation in
this context is that, fog> 1, this 5 approaches Ij, whereas
the probability7°=1-q» of sending a trivial message van-
ishes asymptotically. We can therefore write=1-g(q,c),
where the positive, but still unknown functigyq,c) will be
shown to vanish in the larggdimit.

Note that, in the case of fluctuating vertex degrees, also
will fluctuate according to some nontrivial z). For largeq,
this distribution concentrates, however, more and more
sharply around its average value. A careful analysis of the
influence of these fluctuations shows that they contribute
only to subdominant terms in the threshold values, i.e., they
can be neglected to the considered orderg.in

A. The clustering transition in 1RSB approximation

for the other vertices: The input message on the link coming The clustering transition is characterized by the onset of a
from the previous node is induced via the SP equation, th@ontrivial solution of the survey propagation equatids).
others are drawn randomly. Using again the population dyTo determine this point, we consider a graph of constant

namic solution of the coloring problem, it is easy to perform

this average. For 3-COL, e.g., we find the instability to be

present for connectivities<c,,=4.51(see Fig. 6. We have
repeated this study foqy=4 and 5. Our results are summa-

degreec=k+1 with
(40)

Therea is an arbitrary constant, i.e., in the largdimit k is

k=qlng+Ining+ a].

connectivity case, there is an unstable interval close to th
clustering transition afj=3,4. Forq=5, however, it is al-

fhe region where the dynamical transition appears: We look
for an ay at which the first nontrivialy appears as a solution

ways stable. As we will see in the next section, at largerys
connectivities the unstable zone reappears. Again, the most

important conclusion is that the critical values for the COL/

UNCOL transition are in the stable zone. We thus conjecture

that the connectivities for the COL/UNCOL transition are

TABLE llI. Critical connectivities of the coloring problem on
Erdds-Rényi graphs.

q Cd Cm Cq Csp

3 4.42 4,51 4.69 5.01
4 8.27 8.34 8.90 10.21
5 12.67 12.67 13.69 17.1

L) (L -+ D)
D (G- +

As a first step we realize that, foy=1/q andk as given in
Eq. (40), the sums in both the numerator and the denomina-
tor are dominated by values bf<q, where we can replace

[1-17]¢=exp— 7k}
=exp-[1-g(ga)]ing+Ining+a]i}

|
|: qg(q,a)e_ll:|

n (42)

(42)
ging

046705-10



THRESHOLD VALUES, STABILITY ANALYSIS, AND ...

PHYSICAL REVIEW E 70, 046705(2004

up to neglectable corrections. Note the change in notatiothe three dominant terms i we immediately find

from g(qg,c) to g(q, @). Plugging this into Eq(41), we find

ergl- g0
1 , ~ gqa —Q
g(q a) In qq 1- exr{— Ir‘.qqg q,@) —a}
~1- o@a)ga 4
5 Inqq e (43)

This equation closes forg(q,a)=y(a)/Inqg, with the
condition

(44)

1
end=g"
Ya) 2

The maximum of the left-hand side isd for y=1, i.e., a
real solution fory(a) exists if and only ifa>1-In2. We

thus find the dynamical transition in the 1RSB approach at

cg=qling+Ining+1-1In2+0(1)],

nd:}{l—i+o(ln q‘l)]. (45)

q Inq

(50)

The result is equally valid for Poissonian graphs, and it co-
incides precisely with the upper bound of tuczak, i.e., his
improved annealed approximation is asymptotically exact. It
is, however, also only one larger than the conjectured lower
bound by Achlioptas and Naor. In this way we see that the
1RSB approach is not only consistent with the mathematical
bound, but allows for a more precigeven if not rigorous
determination of the threshold value.

Cq=2qIng-Ing-1+0(1).

C. Asymptotic stability

To check the validity of the above results, we have to
certify that the 1RSB solution is locally stable. Again we
discuss only the case of the regular random graph of degree
c=k+1, but the results do not differ in the Poissonian case.

1. Instability of type |

Let us first start with the instability of type I. To do so, we
should compute the eigenvalues of the stability matrix de-
rived in Sec. IV. For average connectivities> g, the recur-

The result is equally valid for Poissonian random graphssion equation(15) is dominated by the first contribution in
This can be understood immediately: Degree fluctuations argoth the numerator and the denominator, leadingp(tg)
of O(\c) O(Wgln @), and they are thus neglectable com-=48(n-1/q) in leading order. Corrections are exponentially

pared to the contributions in E¢40).

B. The COL/UNCOL transition in 1IRSB approximation

small inc/g and can thus be neglected. More precisely, tak-
ing the asymptotic> q results of Eq.(14) and then using
the fact that all colors on all branches except the perturbed

From the upper bound of tuczak and the lower one ofone share the samg one obtains

Achlioptas and Naor we know that

Cq=2qIng-Ing+0O(1). (46)

P k1] € Dt (-7
P a-a)a-gt 3 -

(51)

We are going to rederive this result from the cavity equa-

tions, and we also determine the previously unkna®(i)

contribution. Observing that, under this scaling of the degreeand ((9770/3711)|,7

the contributions in the self-consistency equatidd) be-
have ag1-I7]*~q?, we find

_1 1-2y -3
q(l 2(q 1)[ 77]>+O(q)

1 1 3
= a(l _E(q_ 1)exp{— ky— Ekf}) +0(q7%).

(47)
This equation is solved by
1 1 3ingq
n=—-_5% +0(q79), (48)
q 2¢° 29°

independently on th®(1) term in Eq.(46). This value has to
be plugged into the expression for the complexity,

q-1
|n[2( D'( I -(+D)pl° -—ln(l a7,

=0
(49)

in order to determine the critical point, of the COL/
UNCOL transition from the vanishing af. Keeping only

We immediately compute the del’lvatIVE‘@nolﬁnl)L]
that form the entries of the Jacob|an
matrix T given in Eq.(23):

om| 1w 52
1 - ) 2 - T
5771 7 =7 q &77]_ 7]{57] q(q 1)
Using eigenvalueg26), we finally find forc>q
_(im_m\|  __ 1
A= It - I - -1’
ua 71 773_7577 q
J J
N, = ( ™, +(q-1) 770) ~0. (53)
7]1 (?7]1 77{577
Therefore, the stability criterion reads
k
—<1 (59
(@-1?°

such that the instability appears at connectivity greater than
Ccsp=(1-Q)*+ 1=’ -2q+2+0(1). (55

In fact, this formula gives very good results even at srgall
for both Erdés-Rényi and regular random graphs. The reason
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why it is working so well is that we are considering connec- It is very interesting to compare this behavior with the
tivities growing like g?, so the conditionc>q is satisfied best lower bounds obtained from heuristic algorithms. As
very fast. discussed in more detail in the introduction, these have the
The dominant contributions give always an integgs In  leading ternq In g. This results supports the intuitive feeling
particular in the case of regular graphs it is therefore importhat local linear-time algorithms are not able to enter the
tant to know at least the sign of the next-order term. Numericlustered phase due to the proliferation of metastable states
cally we find this to be positive for arbitrarg. Since we of nonzero energy. It would be interesting to understand bet-
definecgp as the first unstable connectivity, we should there-ter the influence of the structure of the energy landscape on
fore write the behavior of local algorithms, because this interplay be-
tween static and dynamic features may be a useful tool in
ngad @-12+2. (56) systematically impr)(;ving algorithms. y
This formula amazingly appears to be exact evengfeB. Note in this context also that the clustered phase covers
Note that, due to its? dependence, as compared to the ordehalf of the COL phase for largg This means that, compared
qIn q of the g-COL/UNCOL transition, this instability is al- t0, €.g.,q=3, the influence of the clustering phenomenon
ways located in the UNCOL phase and is thus irrelevant tdecomes asymptotically more and more important. In this
the physics of the problem. It is however useful since it tellssense, a full understanding of the clustering phenomenon be-
us when the SP equations gt stop to converge on a yond the 1RSB approximation is of crucial interest.
single graph. The finite result is also extremely well ap-
prox_lmz_ﬂed b_y_ the> g limit in the case of fluctuating con- VIIl. THE FINITE ENERGY PHASE DIAGRAM
nectivities, giving
It is very interesting to consider also finite-energy states,

ER _ _1\2
Csp=1+(a=-1)"+0(1). (57) both for physical and computer science motivations. Indeed,
o the nature of these states and their degree of RSB provide
2. Instability of type Il some crucial information for the physical picture of the

Finally, we have also to check if a type Il instability ex- model and for its finite-temperature phase transition. Ther-
ists. To do so, we start our investigation close to the clustermodynamically, the anti-ferromagnetic Potts model on ran-
ing transition, i.e., we go back to the scaling dom graphs behaves, in fact, similar to a Potts gl88s4Q
and it is thus interestinpger se For instance, one would like

k=qllng+Ining+a]. (58) {5 know if, depending on the number of colors and on the
As shown before, this results in connectivity, the system behaves gs-gpin model and has a
1RSB transition, or as the Sherrington-Kirkpatrick model
7= }[1 -2 4o q‘l)} (590  Which has a continuous transition. From the point of view of
q Ing ' combinatorial optimization, it is also widely believed that the

time dependence of local search algorithm, and the perfor-
mance they may reach, is also related to the structure of the
energy landscapg86-39. It has been shown very recently

where y is the smaller of the two solutions ofy2 ¥=e"“.
The stability criterion(38) reads

E (-1) (q 2)[1 (I +2) 7]t that it is possible to predict a threshold where a slow anneal-
Mvoe 1= k(g -1 <1. ing will end [14] using the statistical physics information on
P |—o (— 1) (|+1)[1 —-(1+ 17K the nature of excited states.

The basic question we will answer in this section follows
(600 from Ref.[13], where the complexit¥ (e) where computed
using the 1RSB solution. We know now that the 1RSB solu-
tion is in fact not always correct, so we would like to know
which part of the complexity curve is correct and which part

Plugging in Eqs(58) and(59), and keeping only the leading
order terms, we find

Inin i
Nype 11= €7 + o( = qq). 61 'Snot
For sufficiently largeg, this becomes smaller than one if and A. Regular random graphs
only if e “<1 which, according to the condition foy, Let us first consider regular graphs. In Fig. 7, we plot
holds for all a>1/2. We therefore conclude that 1RSB is complexity versus energy, i.e., the logarithm of the number
stable for all connectivities larger than of states, divided by, versus their energy, for 3-COL on
1 five regular graphs, and for 4-COL on nine regular graphs.
Cm= q{ln g+ining+ > + 0(1)} . (62)  Both cases are in the COL phase which impl&e=0)=0.

We already showed in this paper that the 1RSB approach is
This value is slightly larger than the one @f i.e., there is a  stable for these two caseseat0, and therefore the compu-
linearly growing gap between the onset of a nontrivial 1RSBtation of %(e=0) is correct.
solution and its stability. Note, however, that the relative dis- Extending our work frome=0 to positive energies, we
tance of both expressions is decreasing, the two leadinipdeed find that only the type-II instability is relevant in the
terms incy andc,, coincide. physical part of the phase diagrdire., where complexity is
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1RSB 'lh:eshold stlales

! lRSB AAAAAAAA l .................
0047 | 1RSB suble I ]
0.046 0.016 - 7 T
0.045 0014 | e -
0.044 | €4=0.002027(1) 0012
T 00431 B
N E’* 001
0.042 F ¢ 0008 |
0.041 | 0006
004 -
0.039 | 0004
’ € =0.000264(1 0.002
0038 |/ | o , w0 , , \
0 0.0005 0001 00015 0.002 00025 44 45 46 47 48 49 5 5.1
connectivity
€
0.085 . . FIG. 8. Finite energy phase diagram of the three colorgg.
IRSB - gives the ground-state energy densiy,the energy density of the
0.08 + 1RSB stable . .
1RSB stable states of highest energy, anthe threshold energy in
0.075 the 1RSB approximation, i.e., the energy below which a 1RSB so-
3 1 lution exists.
0.07 4= 0.009982(1)
° 0.065 [ . 7
P~ 006 L Another very importan.t question, using these complexity
0.055 curves, would be to predict dynamical thresholds, as in Ref.
) [14]. That would be a very natural extension of this work to
005 r CGardner = 0-00362(1) dynamical studies.
0.045 +
0.04 . . . . . B. Erdds-Rényi random graphs
0 0002 0004 0006 0008 001

For Erdos-Rényi random graph, we concentrate on
3-COL. Instead of showing further complexity curves, we

FIG. 7. (Color onling Complexity 1RSB and its 1RSB stable Prefer to display, in Fig. 8, a phase diagram which we think
portion for the three-coloring problem on graph with fixed connec-contains a good summary of this work. The following points
tivity c=5 (left), an for the the four-coloring at=9. Both system are to be commented on.
are in the COL phase, and ground state, as well as low-energy First, in full line, we display the ground state enegy;
states, are described by a 1RSB ansatz. However, at high energiersus the average connectivitylt is zero belowc,, in the
whene>e,, excited states should be described by a different anCOL phase, and positive wheo>c,=4.69, i.e., in the
satz, probably F-RSB. UNCOL phase. This has been calculated using the energies

for which the complexity is exactly zero.
non-negative Using Eq.(34) at finite y, we observe that a The energyey is the threshold energy, i.e., the energy
large part of the positive-energy solution is 1RSB unstablebelow which the clustering transition appears, and where
i.e., only a small fraction of the complexity curve close to thereplica symmetry is broken. In 1RSB approximation, it is
ground state is exact. Therefore, using the notaégrifor  nonzero forc>cy=4.42.
Gardner energy34]) for the highest energy for which 1IRSB  The energye; is the Gardner energy, which tell us where
is stable, the 1RSB computation of the complexity is onlythe clustering phenomenon becomes 1RSB unstable. For
valid for energies €-e<eg, and should be modified for e,;<e<eg, states are 1RSB stable, whereas they are un-
es<e<ey. stable foreg<e<ey. This energy line starts at, (note that

Two questions arise. First, how to compute the correcty<c,<c,) and allows us to determine in which zone of
complexity when 1RSB is unstable¢, Of course, it is in prin-this phase diagram 1RSB is correct. It crosses the ground
ciple possible to use a 2RSB ansatz, but this is technicallgtate energy line at;=5.08 (we use again the terminology
much more demanding, and again the stability towards 3RSBf Ref. [17]; cg stand for Gardner connectivityTherefore,
should be tested. It is still a matter of debate how to modifyfor ¢> cg, the problem is never 1RSgt least for physical,
the complexity when 1RSB is unstable: The usual paradigni.e., positive-complexity solutions
is that, if not described by 1RSB, then states should be de- Going back to thee=0 line, we have finally, in the
scribed by a full RSB ansatsince all known 1RSB unstable UNCOL phase, the point where the SP equations stop to
models seem to be described by full RSBssuming that converge on a single graph. This happens forca cgp
this is indeed the case, we have to face the question of the 5.01.
complexity of full RSB states, which again is still very con-
troversial. While some authors argue that full RSB states
have a vanishing complexities, the question remains un-
solved and has recently seen a renewed intefese
Ref. [41)).

[

VIIl. CONCLUSION

In this paper we have studied in detail the limits of 1IRSB
approximation for theg-coloring problem on random graph
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of both fixed and Poissonian degrees. The 1RSB approxima- (97.,847
tion shows two different kind of instabilities: a type-I insta- Vi Go-5=
bility where the clusters of solutions tend to aggregate, and a

type-Il instability where solutions inside a cluster form fur-

ther levels of clusterization. In the colorable phase, we findr, compute this matrix element from E®8) one needs to
in particular the latter kind of instability. Luckily enough, at consider all configurations of messages, ...,04) on the
any =3, the COL/UNCOL transition is found in the 1RSB incoming links2,3, . . d such thata) if the incoming warn-
stable region, making it plausible that the values presented iy on Jink 1 is given by, the warningr is induced at the
Tables Il and Il are in fact the trug-COL/UNCOL oyt andb) if the incoming warning on link 1 is given by
thresholds. o, the warningr is induced at the output. Since we haye

In the limit of g— < many simplifications can be done in | 1 yifferent messages labeled by 0, g, we have to deal
the calculation, allowing for a fully analytic treatment of the \yith 4 q(g+1) X gq(g+1) matrix.

gLosbgz's %?gsilr?t?sggoirnclgg[cglg]gvc\)/zr f:r?jlilrfz anOaII_I}LSJtI\fg%EgOF A physical interpretation of recursio) is that, when a
threshold to be asymptoti’caIIy:q:Zq In g-In q—1+0(1) site is exposc_ad to qrcomponent_ﬁeldw:(hl, e ,h%) (entrie_s
which, on the one hand, coincides precisely with the rigoroud' all negative or zero, reflecting the antiferromagnetic na-
upper bound of Luczafs], which, on the other hand, differs ture of the Hamﬂtomahthen(l)_ if there Is a unique max_|mal
only one from the lower bound of Achlioptas and N&6t. field componentr’, th_e site will se_nd a messagé;saying

All these findings are good news for the 1RSB cavity ap-“do not ta_ke COIOW’? Vishthe outgomg_!m_k(mi the following
proach, that not only turns out to be consistent with indepen?/€ c@ll this a warning of color) and(ii) it will send a zero

dently established rigorous mathematical results, but also a[l'eSSage otherwise. Let us study all elements, case by case,
lows for sharper, though not rigorous, determination of!'St When a zero message is changed to a messenger with a
threshold values color, then a color is changed into another one.

There are several lines in which the work presented here
could be extended. The most straightforward direction is
probably the question of how to implement a 2RSB calcula-
tion, in order to understand the phase-space structure in the When one changes one input message 0 to a colored one,
1RSB unstable region, and to see in how far the 1RSB ape.g., €, it can be shown that most corresponding matrix
proximations for the clustering transition, the complexity andelements vanish. A simple way to show it is the following:
the threshold energy have to be changed. Consider link one, where we are changing the incoming mes-

A second interesting direction concerns the connectiorsage, and the other—1 incoming links. In the first configu-
between the failure of linear-time algorithms and the onset ofation, link one is sending a 0, so it hae effect. The other
clustering. Even if a connection between both seems pretty_ 4 incoming messages induce a fieldf we turn now the
intuitive due to the existence of exponentially many meta’message 0 on branch one t&,~this has the effect of de-
stable states, one should keep in mind that algorithms do ”Q:treasing field componeht by or;e. The outgoing message is
follow a physical dynamics with detailed balance, etc. The,

. . "™nonzero only if there is a unique maximum field, this change
connection between the energy landscape and the conflgur,’:}z-is no effect at all ih® was not a maximum field compo-

tions explored by the algorithm is therefore far from beeingnem. To obtain nonzero matrix elements, we thus have to

obvious. Even if so far no local linear-time algorithms were ; PR : : ; :
T : . ~consider only situations in which this! was a maximum
found that solveg-COL inside the 1RSB stable region, the'réield before g/hanging the first message.

mathematical analysis has no obvious connection to the lan Two cases arise
scape properties of the model. It would therefore be ex- (1) First, if h' was theonly maximum component before

tremely interesting to either establish this connection or %he change, then the output wesin the first configuration

prove Its nonexistence. Adding a new incoming message of color one decreases
ACKNOWLEDGMENTS by one unit. Now eitheh! is still the Unique maximum, and
i o ) o nothing has changed, or it now equals to another field, say
We tha_nk M. Mézard, F. R|c0|-Tersengh|, O.. Rivoire, and 2, and the new outgoing message becomes 0. There is thus
R. Zecchina for useful and cheerful discussions. We als finite probability to change the input from color 1 to 0 by
thank the hospitality of the ICTP Trieste, and two of(BK.  changing an input 0 to color 1.
and M.W) thank the hospitality of the ISI in Torino, where  (2y'Second, ifh! was not the maximum field and if they
part of this work was done. We acknowledge support fromyere two such maximum fields, sé} andh?, then adding
the ISI Foundation, the EXYSTENCE Network, and from a3, incoming message of color 1 forcesto decrease, and

European Community's Human Potential program undefpereforeh? may become the only maximum and the new
Contract Nos. HPRN-CT-2002-0031STIPCO and HPRN- output is -6,.

CT-2002-00304DYGLAGEMEM). There are thus only two nonzero terms, that we will call
APPENDIX A: INSTABILITY OF THE SECOND KIND A andB:

(A1)

o—0T"
it

1. Changing 0 to a colored message (or a color to 0)

In this appendix we study the eigenvalues of the matrix
defined by Eq(29), A=Vo_20-1,
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B=V{_ 00.1- (A2)  the base we chose, the matrix is block triangular, so we will
_ ) need only to care of diagonal block matrices to compute
All other nonzero terms having a zero input changed t0 &ijgenvaluegsince, in a triangular block matrix, eigenvalues

colored one, result from simple color permutations and equajre eigenvalues of the diagonal matricasle write
the two described ones. Note that similar equations can be

written when one changes an input of color 1 to 0. In this 0,0(e,0) (ee')
case the only nonzero terms are given by ™ r T ’
(anl)
A"=V3 010, (0,,)
B'=Vp_.11-0- (A3) = (6 'e' ) m
\\Mg
The values of4, A’, B, andB’ are associated to the two M W
following situations(considering the set of fields resulting - ’(e 0) -
from the otherd—1 incoming messaggs(a) .A(qg,{7}) and = b o
A’(q,{n}) are probabilities of havindp® and h? as the two V= o (€2,0) | (A5)
only maximum field andb) B(q,{7}) andB’(q,{#}) are the i L
probability of havingh' as the maximum field, and that at (e,,0)
least one other field with value=h'-1 exists. To obtain the ™ N f ™
final matrix element one has to put the reweighting factor (e,©)
corresponding the to second configuration, therefore we find (€69
L 5, €3 -
A(a.{n}) = A" (a.{n}) -1y ... 0 Z -~
=C, >  P(LhAhe, ... h9e'™, (e3,€7)
(h3,...h9>hl=h2) - L (e5,€1) -
(A4) .
whereM andZ can be written
B@{m)=C X P(h2 1%, ... h)e", 0 4 . AF o . o]
(2. pien) ,
[hl—lzma>(h2,h3,. ) .,hq)] .A 0 e .A 0 B - O
B(a,{7}) = Co > P(ht,h2 ke, ... ho)e™D), A 00 0 ..B
(h2,....hT>ht) M= ls o 0 0 A A
[h'-1=maxh?h3,...h%] 0 B 0 A 0 A
where we have introduced, following R¢1.3], the notation
P(h) as the probability of having a configuration of messages 0 o B A A 0
that gives a set of fieldh before any reweighting is done. - .

Thusl~3(ﬁ) would result from Eq(17) by settingy=0. This
notation will be of great use in the computation of Appendix""nd

A. Note that, to comput@(ﬁ) we consider here only mes-

sages arriving from thd—-1 unchanged linkg,3, ... d. 0O ... 0 A
Finally, another very important property for the structure 0 A 0
of the matrix is that, by changing 0 t&, one cannot change 7= ’
a colorrto another colof in the output. This will turn out to cee Coee
considerably simplify the problem. A ... 0 O
2. Changing one color to another color
We now consider a change of the first incoming message 4. Eigenvalue analysis
from color 1 to color 2. One can show, using similar kind of
reasoning, thatVi ;1 .5=Va 51 .2=Vi 31 .2=Va 31 .2 We are now ready to find the biggest eigenvalues of the
=V; .11.,=0 and thatV, ;; ,=.A. Having in mind these matrixV, which will be the biggest of all eigenvalues fratn
relations, we can now write the stability matrix. and M. The matrixZ has (g°-q)/2 eigenvalues A, and
N _ (q?-q)/2 eigenvaluesA. Eigenvalues ofM can be easily
3. The stability matrix V studied using again its block matrix structure; the biggest one

We write the stability matri®/ in a way that justifies why is found to be(q—1).A+BB’. Thus the biggest eigenvalue
we did not care about some terms in the previous section. Inf the whole stability matrix is
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N=(q- DA {7}) + VBa,{n)B' ({7},

whereA, B, andB’ are defined by EqA4). In they=c case,
new simplification arises becaugkis associated with con-

(A6)

tradicting messages and it is annihilated by its reweighting

factor. Thus
Ny = (Q= DAy, {7}), (A7)

where A,-..(q,{7}) may be explicitly computedsee Appen-
dix B) and reads

=D (T, -1+ 2)m]
D (I [ -0+ 7]
(A8)

-Ay:oc(qn{n}) =

APPENDIX B: INSTABILITY OF THE SECOND KIND AT
y:oo

Let us concentrate on theolorable phasewhere the
ground states are characterized yy~. Here we give an

explicit computation ofd,-... Let us concentrate for the deri- n'n?<o
vation for 3-COL. Following the notation of Appendix B, we

denotel?’(ﬁ) the probability of having a configuration af
warnings that sum up to the field without reweighting. It

has no direct physical meaning but it is of great technical

help in the present computation, see Ré&f].

We first need to calculate the value of the normalization

constantC, in the y—o<o limit. Since reweighting is killing

PHYSICAL REVIEW E 70, 046705(2004)

P(h'=0,n2=0,h3, ... h9).

>

(h3,...h9<hl=h2=0)

A(q.{n}) =Co

(B2)

Therefore, A(q,{#n}) is easily computed once the expres-

sion of P for a given number ofl branches are known. Using
the cavity recursion equations, one can show that, when sum-
ming overd neighbors

k
P(0,0,0=[](1-37), (B3)
i=1

k
> P(h%,0,0 =] (1-273)-P(0,0,0

h3<o0 i=1

k k
=[T@a-2m-11Q@-37), B4
i=1 i=1

k
> PhLh20) =11 -5)-2> P(h%0,0 - P(0,0,0

i=1 hl<o

k k
=[l@a-m-2lT@-2n)
i=1 i=1

k
+[1@-3n). (B5)
i=1

Using these relations, with the proper product overdhe

any term With positive energy shift, thg only surviving terms . y_1 incoming messages, we immediately get from Eq.
in the recursion are those where all fields have at least on(eBz) '

zero component, allowing for the selecting of at least one
color without violating an edge. The normalization factor Ay-..(q=3,{7})

thus reads ] ]_[ikzz -2 H:‘:2 -3
alIE - -l -2+ [T, - 3m)

(B1) (B6)
where the combinatorial factors 3 appearing on the right-ThiS equation can be easily generalized to an arbitrary num-

hand side are obtained by noting t@m,0,0):ﬁ(O,h,O) berq of colors, and V\_Ij find ’
=P(0,0,h) and thatP(ht,h?,0)=P(ht,0,h2)=P(0,ht,h?). 2 CD(TII, [ -(0+27]

1 ~ ~ -
—=P(0,0,0+32> P(ht,0,0+3 > P(hh%0),
Co hl<o h! h2<0

Now, we need to compute the expression fbfrom Eq.
(A4), summing this time only over thé—1 incoming warn-

ings2,3,...,d2,3, in the computation @ in the numerator

Ay—o(adn) = S _
’ ’ Iq:ol (= 1)|(|31)Hik:l [1-(+21) 7]

(B7)
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